Files
freeCodeCamp/curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-337-totient-stairstep-sequences.md
Oliver Eyton-Williams ee1e8abd87 feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

849 B

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f4be1000cf542c50ffd0 Problem 337: Totient Stairstep Sequences 5 301995 problem-337-totient-stairstep-sequences

--description--

Let {a1, a2,..., an} be an integer sequence of length n such that:

a1 = 6

for all 1 ≤ i < n : φ(ai) < φ(ai+1) < ai < ai+11

Let S(N) be the number of such sequences with an ≤ N.

For example, S(10) = 4: {6}, {6, 8}, {6, 8, 9} and {6, 10}.

We can verify that S(100) = 482073668 and S(10 000) mod 108 = 73808307.

Find S(20 000 000) mod 108.

1 φ denotes Euler's totient function.

--hints--

euler337() should return 85068035.

assert.strictEqual(euler337(), 85068035);

--seed--

--seed-contents--

function euler337() {

  return true;
}

euler337();

--solutions--

// solution required