* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
		
			
				
	
	
		
			51 lines
		
	
	
		
			654 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			51 lines
		
	
	
		
			654 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5e8f2f13c4cdbe86b5c72d9e
 | |
| title: 'Natural Language Processing With RNNs: Sentiment Analysis'
 | |
| challengeType: 11
 | |
| videoId: lYeLtu8Nq7c
 | |
| dashedName: natural-language-processing-with-rnns-sentiment-analysis
 | |
| ---
 | |
| 
 | |
| # --question--
 | |
| 
 | |
| ## --text--
 | |
| 
 | |
| Fill in the blanks below to create the model for the RNN:
 | |
| 
 | |
| ```py
 | |
| model = __A__.keras.Sequential([
 | |
|     __A__.keras.layers.__B__(88584, 32),
 | |
|     __A__.keras.layers.__C__(32),
 | |
|     __A__.keras.layers.DENSE(1, activation='sigmoid')
 | |
| ])
 | |
| ```
 | |
| 
 | |
| ## --answers--
 | |
| 
 | |
| A: `tensor_flow`
 | |
| 
 | |
| B: `embedding`
 | |
| 
 | |
| C: `LSTM`
 | |
| 
 | |
| ---
 | |
| 
 | |
| A: `tf`
 | |
| 
 | |
| B: `Embedding`
 | |
| 
 | |
| C: `AlphaDropout`
 | |
| 
 | |
| ---
 | |
| 
 | |
| A: `tf`
 | |
| 
 | |
| B: `Embedding`
 | |
| 
 | |
| C: `LSTM`
 | |
| 
 | |
| ## --video-solution--
 | |
| 
 | |
| 3
 | |
| 
 |