* fix: clean-up Project Euler 141-160 * fix: corrections from review Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> * fix: use different notation for consistency * Update curriculum/challenges/english/10-coding-interview-prep/project-euler/problem-144-investigating-multiple-reflections-of-a-laser-beam.md Co-authored-by: gikf <60067306+gikf@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			49 lines
		
	
	
		
			827 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			49 lines
		
	
	
		
			827 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f40d1000cf542c50ff1f
 | |
| title: 'Problem 160: Factorial trailing digits'
 | |
| challengeType: 5
 | |
| forumTopicId: 301794
 | |
| dashedName: problem-160-factorial-trailing-digits
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| For any $N$, let $f(N)$ be the last five digits before the trailing zeroes in $N!$.
 | |
| 
 | |
| For example,
 | |
| 
 | |
| $$\begin{align}
 | |
|   & 9! = 362880 \\; \text{so} \\; f(9) = 36288 \\\\
 | |
|   & 10! = 3628800 \\; \text{so} \\; f(10) = 36288 \\\\
 | |
|   & 20! = 2432902008176640000 \\; \text{so} \\; f(20) = 17664
 | |
| \end{align}$$
 | |
| 
 | |
| Find $f(1,000,000,000,000)$
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `factorialTrailingDigits()` should return `16576`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(factorialTrailingDigits(), 16576);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function factorialTrailingDigits() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| factorialTrailingDigits();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |