* fix: clean-up Project Euler 201-220 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			47 lines
		
	
	
		
			954 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			47 lines
		
	
	
		
			954 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f4461000cf542c50ff58
 | |
| title: 'Problem 217: Balanced Numbers'
 | |
| challengeType: 5
 | |
| forumTopicId: 301859
 | |
| dashedName: problem-217-balanced-numbers
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| A positive integer with $k$ (decimal) digits is called balanced if its first $⌈\frac{k}{2}⌉$ digits sum to the same value as its last $⌈\frac{k}{2}⌉$ digits, where $⌈x⌉$, pronounced ceiling of $x$, is the smallest integer $≥ x$, thus $⌈π⌉ = 4$ and $⌈5⌉ = 5$.
 | |
| 
 | |
| So, for example, all palindromes are balanced, as is 13722.
 | |
| 
 | |
| Let $T(n)$ be the sum of all balanced numbers less than $10^n$.
 | |
| 
 | |
| Thus: $T(1) = 45$, $T(2) = 540$ and $T(5) = 334\\,795\\,890$.
 | |
| 
 | |
| Find $T(47)\\,mod\\,3^{15}$
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `balancedNumbers()` should return `6273134`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(balancedNumbers(), 6273134);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function balancedNumbers() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| balancedNumbers();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |