* fix: clean-up Project Euler 341-360 * fix: improve wording Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			66 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			66 lines
		
	
	
		
			1.5 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f4d21000cf542c50ffe5
 | ||
| title: 'Problem 358: Cyclic numbers'
 | ||
| challengeType: 5
 | ||
| forumTopicId: 302018
 | ||
| dashedName: problem-358-cyclic-numbers
 | ||
| ---
 | ||
| 
 | ||
| # --description--
 | ||
| 
 | ||
| A cyclic number with $n$ digits has a very interesting property:
 | ||
| 
 | ||
| When it is multiplied by 1, 2, 3, 4, ... $n$, all the products have exactly the same digits, in the same order, but rotated in a circular fashion!
 | ||
| 
 | ||
| The smallest cyclic number is the 6-digit number 142857:
 | ||
| 
 | ||
| $$\begin{align}
 | ||
|   & 142857 × 1 = 142857 \\\\
 | ||
|   & 142857 × 2 = 285714 \\\\
 | ||
|   & 142857 × 3 = 428571 \\\\
 | ||
|   & 142857 × 4 = 571428 \\\\
 | ||
|   & 142857 × 5 = 714285 \\\\
 | ||
|   & 142857 × 6 = 857142
 | ||
| \end{align}$$
 | ||
| 
 | ||
| The next cyclic number is 0588235294117647 with 16 digits:
 | ||
| 
 | ||
| $$\begin{align}
 | ||
|   & 0588235294117647 × 1 = 0588235294117647 \\\\
 | ||
|   & 0588235294117647 × 2 = 1176470588235294 \\\\
 | ||
|   & 0588235294117647 × 3 = 1764705882352941 \\\\
 | ||
|   & \ldots \\\\
 | ||
|   & 0588235294117647 × 16 = 9411764705882352
 | ||
| \end{align}$$
 | ||
| 
 | ||
| Note that for cyclic numbers, leading zeros are important.
 | ||
| 
 | ||
| There is only one cyclic number for which, the eleven leftmost digits are 00000000137 and the five rightmost digits are 56789 (i.e., it has the form $00000000137\ldots56789$ with an unknown number of digits in the middle). Find the sum of all its digits.
 | ||
| 
 | ||
| # --hints--
 | ||
| 
 | ||
| `cyclicNumbers()` should return `3284144505`.
 | ||
| 
 | ||
| ```js
 | ||
| assert.strictEqual(cyclicNumbers(), 3284144505);
 | ||
| ```
 | ||
| 
 | ||
| # --seed--
 | ||
| 
 | ||
| ## --seed-contents--
 | ||
| 
 | ||
| ```js
 | ||
| function cyclicNumbers() {
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| cyclicNumbers();
 | ||
| ```
 | ||
| 
 | ||
| # --solutions--
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 |