* fix: clean-up Project Euler 361-380 * fix: improve wording Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> * fix: remove unnecessary paragraph * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Sem Bauke <46919888+Sembauke@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			53 lines
		
	
	
		
			1008 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			53 lines
		
	
	
		
			1008 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f4d61000cf542c50ffe9
 | ||
| title: 'Problem 362: Squarefree factors'
 | ||
| challengeType: 5
 | ||
| forumTopicId: 302023
 | ||
| dashedName: problem-362-squarefree-factors
 | ||
| ---
 | ||
| 
 | ||
| # --description--
 | ||
| 
 | ||
| Consider the number 54.
 | ||
| 
 | ||
| 54 can be factored in 7 distinct ways into one or more factors larger than 1:
 | ||
| 
 | ||
| $$54, 2 × 27, 3 × 18, 6 × 9, 3 × 3 × 6, 2 × 3 × 9 \text{ and } 2 × 3 × 3 × 3$$
 | ||
| 
 | ||
| If we require that the factors are all squarefree only two ways remain: $3 × 3 × 6$ and $2 × 3 × 3 × 3$.
 | ||
| 
 | ||
| Let's call $Fsf(n)$ the number of ways $n$ can be factored into one or more squarefree factors larger than 1, so $Fsf(54) = 2$.
 | ||
| 
 | ||
| Let $S(n)$ be $\sum Fsf(k)$ for $k = 2$ to $n$.
 | ||
| 
 | ||
| $S(100) = 193$.
 | ||
| 
 | ||
| Find $S(10\\,000\\,000\\,000)$.
 | ||
| 
 | ||
| # --hints--
 | ||
| 
 | ||
| `squarefreeFactors()` should return `457895958010`.
 | ||
| 
 | ||
| ```js
 | ||
| assert.strictEqual(squarefreeFactors(), 457895958010);
 | ||
| ```
 | ||
| 
 | ||
| # --seed--
 | ||
| 
 | ||
| ## --seed-contents--
 | ||
| 
 | ||
| ```js
 | ||
| function squarefreeFactors() {
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| squarefreeFactors();
 | ||
| ```
 | ||
| 
 | ||
| # --solutions--
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 |