47 lines
		
	
	
		
			935 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			47 lines
		
	
	
		
			935 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f4fd1000cf542c51000f
 | |
| title: 'Problem 401: Sum of squares of divisors'
 | |
| challengeType: 5
 | |
| forumTopicId: 302069
 | |
| dashedName: problem-401-sum-of-squares-of-divisors
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| The divisors of 6 are 1, 2, 3 and 6.
 | |
| 
 | |
| The sum of the squares of these numbers is $1 + 4 + 9 + 36 = 50$.
 | |
| 
 | |
| Let $\sigma_2(n)$ represent the sum of the squares of the divisors of $n$. Thus $\sigma_2(6) = 50$.
 | |
| 
 | |
| Let $\Sigma_2$ represent the summatory function of $\sigma_2$, that is $\Sigma_2(n) = \sum \sigma_2(i)$ for $i=1$ to $n$. The first 6 values of $\Sigma_2$ are: 1, 6, 16, 37, 63 and 113.
 | |
| 
 | |
| Find $\Sigma_2({10}^{15})$ modulo ${10}^9$.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `sumOfSquaresDivisors()` should return `281632621`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(sumOfSquaresDivisors(), 281632621);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function sumOfSquaresDivisors() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| sumOfSquaresDivisors();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |