45 lines
		
	
	
		
			727 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			45 lines
		
	
	
		
			727 B
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f5041000cf542c510016
 | |
| title: 'Problem 407: Idempotents'
 | |
| challengeType: 5
 | |
| forumTopicId: 302075
 | |
| dashedName: problem-407-idempotents
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| If we calculate $a^2\bmod 6$ for $0 ≤ a ≤ 5$ we get: 0, 1, 4, 3, 4, 1.
 | |
| 
 | |
| The largest value of a such that $a^2 ≡ a\bmod 6$ is $4$.
 | |
| 
 | |
| Let's call $M(n)$ the largest value of $a < n$ such that $a^2 ≡ a (\text{mod } n)$. So $M(6) = 4$.
 | |
| 
 | |
| Find $\sum M(n)$ for $1 ≤ n ≤ {10}^7$.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `idempotents()` should return `39782849136421`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(idempotents(), 39782849136421);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function idempotents() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| idempotents();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |