47 lines
		
	
	
		
			1.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			47 lines
		
	
	
		
			1.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f5071000cf542c510018
 | |
| title: 'Problem 410: Circle and tangent line'
 | |
| challengeType: 5
 | |
| forumTopicId: 302079
 | |
| dashedName: problem-410-circle-and-tangent-line
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| Let $C$ be the circle with radius $r$, $x^2 + y^2 = r^2$. We choose two points $P(a, b)$ and $Q(-a, c)$ so that the line passing through $P$ and $Q$ is tangent to $C$.
 | |
| 
 | |
| For example, the quadruplet $(r, a, b, c) = (2, 6, 2, -7)$ satisfies this property.
 | |
| 
 | |
| Let $F(R, X)$ be the number of the integer quadruplets $(r, a, b, c)$ with this property, and with $0 < r ≤ R$ and $0 < a ≤ X$.
 | |
| 
 | |
| We can verify that $F(1, 5) = 10$, $F(2, 10) = 52$ and $F(10, 100) = 3384$.
 | |
| 
 | |
| Find $F({10}^8, {10}^9) + F({10}^9, {10}^8)$.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `circleAndTangentLine()` should return `799999783589946600`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(circleAndTangentLine(), 799999783589946600);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function circleAndTangentLine() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| circleAndTangentLine();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |