* fix: clean-up Project Euler 441-460 * fix: corrections from review Co-authored-by: Tom <20648924+moT01@users.noreply.github.com> Co-authored-by: Tom <20648924+moT01@users.noreply.github.com>
		
			
				
	
	
		
			60 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			60 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | |
| id: 5900f5351000cf542c510047
 | |
| title: 'Problem 456: Triangles containing the origin II'
 | |
| challengeType: 5
 | |
| forumTopicId: 302130
 | |
| dashedName: problem-456-triangles-containing-the-origin-ii
 | |
| ---
 | |
| 
 | |
| # --description--
 | |
| 
 | |
| Define:
 | |
| 
 | |
| $$\begin{align}
 | |
|   & x_n = ({1248}^n\bmod 32323) - 16161 \\\\
 | |
|   & y_n = ({8421}^n\bmod 30103) - 15051 \\\\
 | |
|   & P_n = \\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\\}
 | |
| \end{align}$$
 | |
| 
 | |
| For example,
 | |
| $$P_8 = \\{(-14913, -6630), (-10161, 5625), (5226, 11896), (8340, -10778), (15852, -5203), (-15165, 11295), (-1427, -14495), (12407, 1060)\\}$$
 | |
| 
 | |
| Let $C(n)$ be the number of triangles whose vertices are in $P_n$ which contain the origin in the interior.
 | |
| 
 | |
| Examples:
 | |
| 
 | |
| $$\begin{align}
 | |
|   & C(8) = 20 \\\\
 | |
|   & C(600) = 8\\,950\\,634 \\\\
 | |
|   & C(40\\,000) = 2\\,666\\,610\\,948\\,988
 | |
| \end{align}$$
 | |
| 
 | |
| Find $C(2\\,000\\,000)$.
 | |
| 
 | |
| # --hints--
 | |
| 
 | |
| `trianglesContainingOriginTwo()` should return `333333208685971500`.
 | |
| 
 | |
| ```js
 | |
| assert.strictEqual(trianglesContainingOriginTwo(), 333333208685971500);
 | |
| ```
 | |
| 
 | |
| # --seed--
 | |
| 
 | |
| ## --seed-contents--
 | |
| 
 | |
| ```js
 | |
| function trianglesContainingOriginTwo() {
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| trianglesContainingOriginTwo();
 | |
| ```
 | |
| 
 | |
| # --solutions--
 | |
| 
 | |
| ```js
 | |
| // solution required
 | |
| ```
 |