* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
		
			
				
	
	
		
			100 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			100 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f39a1000cf542c50fead
 | ||
| title: 'Problem 46: Goldbach''s other conjecture'
 | ||
| challengeType: 5
 | ||
| forumTopicId: 302134
 | ||
| dashedName: problem-46-goldbachs-other-conjecture
 | ||
| ---
 | ||
| 
 | ||
| # --description--
 | ||
| 
 | ||
| It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a prime and twice a square.
 | ||
| 
 | ||
| <div style='margin-left: 2em;'>
 | ||
|   9 = 7 + 2×1<sup>2</sup><br>
 | ||
|   15 = 7 + 2×2<sup>2</sup><br>
 | ||
|   21 = 3 + 2×3<sup>2</sup><br>
 | ||
|   25 = 7 + 2×3<sup>2</sup><br>
 | ||
|   27 = 19 + 2×2<sup>2</sup><br>
 | ||
|   33 = 31 + 2×1<sup>2</sup>
 | ||
| </div>
 | ||
| 
 | ||
| It turns out that the conjecture was false.
 | ||
| 
 | ||
| What is the smallest odd composite that cannot be written as the sum of a prime and twice a square?
 | ||
| 
 | ||
| # --hints--
 | ||
| 
 | ||
| `goldbachsOtherConjecture()` should return a number.
 | ||
| 
 | ||
| ```js
 | ||
| assert(typeof goldbachsOtherConjecture() === 'number');
 | ||
| ```
 | ||
| 
 | ||
| `goldbachsOtherConjecture()` should return 5777.
 | ||
| 
 | ||
| ```js
 | ||
| assert.strictEqual(goldbachsOtherConjecture(), 5777);
 | ||
| ```
 | ||
| 
 | ||
| # --seed--
 | ||
| 
 | ||
| ## --seed-contents--
 | ||
| 
 | ||
| ```js
 | ||
| function goldbachsOtherConjecture() {
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| goldbachsOtherConjecture();
 | ||
| ```
 | ||
| 
 | ||
| # --solutions--
 | ||
| 
 | ||
| ```js
 | ||
| function goldbachsOtherConjecture() {  function isPrime(num) {
 | ||
|     if (num < 2) {
 | ||
|       return false;
 | ||
|     } else if (num === 2) {
 | ||
|       return true;
 | ||
|     }
 | ||
|     const sqrtOfNum = Math.floor(num ** 0.5);
 | ||
|     for (let i = 2; i <= sqrtOfNum + 1; i++) {
 | ||
|       if (num % i === 0) {
 | ||
|         return false;
 | ||
|       }
 | ||
|     }
 | ||
|     return true;
 | ||
|   }
 | ||
| 
 | ||
|   function isSquare(num) {
 | ||
|     return Math.sqrt(num) % 1 === 0;
 | ||
|   }
 | ||
| 
 | ||
|   // construct a list of prime numbers
 | ||
|   const primes = [];
 | ||
|   for (let i = 2; primes.length < 1000; i++) {
 | ||
|     if (isPrime(i)) primes.push(i);
 | ||
|   }
 | ||
| 
 | ||
|   let num = 3;
 | ||
|   let answer;
 | ||
|   while (!answer) {
 | ||
|     num += 2;
 | ||
|     if (!isPrime(num)) {
 | ||
|       let found = false;
 | ||
|       for (let primeI = 0; primeI < primes.length && !found; primeI++) {
 | ||
|         const square = (num - primes[primeI]) / 2;
 | ||
|         if (isSquare(square)) {
 | ||
|           found = true;
 | ||
|           break;
 | ||
|         }
 | ||
|       }
 | ||
|       if (!found) answer = num;
 | ||
|     }
 | ||
|   }
 | ||
|   return answer;
 | ||
| }
 | ||
| ```
 |