* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
		
			
				
	
	
		
			45 lines
		
	
	
		
			1.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			45 lines
		
	
	
		
			1.0 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f4601000cf542c50ff73
 | ||
| title: 'Problem 243: Resilience'
 | ||
| challengeType: 5
 | ||
| forumTopicId: 301890
 | ||
| dashedName: problem-243-resilience
 | ||
| ---
 | ||
| 
 | ||
| # --description--
 | ||
| 
 | ||
| A positive fraction whose numerator is less than its denominator is called a proper fraction.
 | ||
| 
 | ||
| For any denominator, d, there will be d−1 proper fractions; for example, with d = 12:1/12 , 2/12 , 3/12 , 4/12 , 5/12 , 6/12 , 7/12 , 8/12 , 9/12 , 10/12 , 11/12 .
 | ||
| 
 | ||
| We shall call a fraction that cannot be cancelled down a resilient fraction. Furthermore we shall define the resilience of a denominator, R(d), to be the ratio of its proper fractions that are resilient; for example, R(12) = 4/11 . In fact, d = 12 is the smallest denominator having a resilience R(d) < 4/10 .
 | ||
| 
 | ||
| Find the smallest denominator d, having a resilience R(d) < 15499/94744 .
 | ||
| 
 | ||
| # --hints--
 | ||
| 
 | ||
| `euler243()` should return 892371480.
 | ||
| 
 | ||
| ```js
 | ||
| assert.strictEqual(euler243(), 892371480);
 | ||
| ```
 | ||
| 
 | ||
| # --seed--
 | ||
| 
 | ||
| ## --seed-contents--
 | ||
| 
 | ||
| ```js
 | ||
| function euler243() {
 | ||
| 
 | ||
|   return true;
 | ||
| }
 | ||
| 
 | ||
| euler243();
 | ||
| ```
 | ||
| 
 | ||
| # --solutions--
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 |