* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
		
			
				
	
	
		
			79 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			79 lines
		
	
	
		
			1.8 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ---
 | ||
| id: 5900f3871000cf542c50fe9a
 | ||
| title: 'Problem 27: Quadratic primes'
 | ||
| challengeType: 5
 | ||
| forumTopicId: 301919
 | ||
| dashedName: problem-27-quadratic-primes
 | ||
| ---
 | ||
| 
 | ||
| # --description--
 | ||
| 
 | ||
| Euler discovered the remarkable quadratic formula:
 | ||
| 
 | ||
| <div style='margin-left: 4em;'>$n^2 + n + 41$</div>
 | ||
| 
 | ||
| It turns out that the formula will produce 40 primes for the consecutive integer values $0 \\le n \\le 39$. However, when $n = 40, 40^2 + 40 + 41 = 40(40 + 1) + 41$ is divisible by 41, and certainly when $n = 41, 41^2 + 41 + 41$ is clearly divisible by 41.
 | ||
| 
 | ||
| The incredible formula $n^2 - 79n + 1601$ was discovered, which produces 80 primes for the consecutive values $0 \\le n \\le 79$. The product of the coefficients, −79 and 1601, is −126479.
 | ||
| 
 | ||
| Considering quadratics of the form:
 | ||
| 
 | ||
| <div style='margin-left: 4em;'>
 | ||
|   $n^2 + an + b$, where $|a| < range$ and $|b| \le range$<br>
 | ||
|   where $|n|$ is the modulus/absolute value of $n$<br>
 | ||
|   e.g. $|11| = 11$ and $|-4| = 4$<br>
 | ||
| </div>
 | ||
| 
 | ||
| Find the product of the coefficients, $a$ and $b$, for the quadratic expression that produces the maximum number of primes for consecutive values of $n$, starting with $n = 0$.
 | ||
| 
 | ||
| # --hints--
 | ||
| 
 | ||
| `quadraticPrimes(200)` should return a number.
 | ||
| 
 | ||
| ```js
 | ||
| assert(typeof quadraticPrimes(200) === 'number');
 | ||
| ```
 | ||
| 
 | ||
| `quadraticPrimes(200)` should return -4925.
 | ||
| 
 | ||
| ```js
 | ||
| assert(quadraticPrimes(200) == -4925);
 | ||
| ```
 | ||
| 
 | ||
| `quadraticPrimes(500)` should return -18901.
 | ||
| 
 | ||
| ```js
 | ||
| assert(quadraticPrimes(500) == -18901);
 | ||
| ```
 | ||
| 
 | ||
| `quadraticPrimes(800)` should return -43835.
 | ||
| 
 | ||
| ```js
 | ||
| assert(quadraticPrimes(800) == -43835);
 | ||
| ```
 | ||
| 
 | ||
| `quadraticPrimes(1000)` should return -59231.
 | ||
| 
 | ||
| ```js
 | ||
| assert(quadraticPrimes(1000) == -59231);
 | ||
| ```
 | ||
| 
 | ||
| # --seed--
 | ||
| 
 | ||
| ## --seed-contents--
 | ||
| 
 | ||
| ```js
 | ||
| function quadraticPrimes(range) {
 | ||
| 
 | ||
|   return range;
 | ||
| }
 | ||
| 
 | ||
| quadraticPrimes(1000);
 | ||
| ```
 | ||
| 
 | ||
| # --solutions--
 | ||
| 
 | ||
| ```js
 | ||
| // solution required
 | ||
| ```
 |