* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
9.5 KiB
9.5 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
587d8258367417b2b2512c82 | 在二叉搜索树中删除具有两个子节点的节点 | 1 | delete-a-node-with-two-children-in-a-binary-search-tree |
--description--
删除具有两个子节点的节点是最难实现的。删除这样的节点会生成两个不再连接到原始树结构的子树。我们如何重新连接它们?一种方法是在目标节点的右子树中找到最小值,并用该值替换目标节点。以这种方式选择替换确保它大于左子树中的每个节点,它成为新的父节点,但也小于右子树中的每个节点,它成为新的父节点。完成此替换后,必须从右子树中删除替换节点。即使这个操作也很棘手,因为替换可能是一个叶子,或者它本身可能是一个右子树的父亲。如果是叶子,我们必须删除其父对它的引用。否则,它必须是目标的正确子项。在这种情况下,我们必须用替换值替换目标值,并使目标引用替换的右子。说明:让我们通过处理第三种情况来完成我们的remove
方法。我们为前两种情况再次提供了一些代码。现在添加一些代码来处理具有两个子节点的目标节点。任何边缘情况要注意?如果树只有三个节点怎么办?完成后,这将完成二进制搜索树的删除操作。干得好,这是一个非常难的问题!
--hints--
存在BinarySearchTree
数据结构。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
}
return typeof test == 'object';
})()
);
二叉搜索树有一个名为remove
的方法。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
return typeof test.remove == 'function';
})()
);
尝试删除不存在的元素将返回null
。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
return typeof test.remove == 'function' ? test.remove(100) == null : false;
})()
);
如果根节点没有子节点,则删除它会将根节点设置为null
。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
test.add(500);
test.remove(500);
return typeof test.remove == 'function' ? test.inorder() == null : false;
})()
);
remove
方法从树中删除叶节点
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
test.add(5);
test.add(3);
test.add(7);
test.add(6);
test.add(10);
test.add(12);
test.remove(3);
test.remove(12);
test.remove(10);
return typeof test.remove == 'function'
? test.inorder().join('') == '567'
: false;
})()
);
remove
方法删除具有一个子节点的节点。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.remove !== 'function') {
return false;
}
test.add(-1);
test.add(3);
test.add(7);
test.add(16);
test.remove(16);
test.remove(7);
test.remove(3);
return test.inorder().join('') == '-1';
})()
);
删除具有两个节点的树中的根将第二个节点设置为根。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.remove !== 'function') {
return false;
}
test.add(15);
test.add(27);
test.remove(15);
return test.inorder().join('') == '27';
})()
);
remove
方法在保留二叉搜索树结构的同时删除具有两个子节点的节点。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.remove !== 'function') {
return false;
}
test.add(1);
test.add(4);
test.add(3);
test.add(7);
test.add(9);
test.add(11);
test.add(14);
test.add(15);
test.add(19);
test.add(50);
test.remove(9);
if (!test.isBinarySearchTree()) {
return false;
}
test.remove(11);
if (!test.isBinarySearchTree()) {
return false;
}
test.remove(14);
if (!test.isBinarySearchTree()) {
return false;
}
test.remove(19);
if (!test.isBinarySearchTree()) {
return false;
}
test.remove(3);
if (!test.isBinarySearchTree()) {
return false;
}
test.remove(50);
if (!test.isBinarySearchTree()) {
return false;
}
test.remove(15);
if (!test.isBinarySearchTree()) {
return false;
}
return test.inorder().join('') == '147';
})()
);
可以在三个节点的树上删除根。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.remove !== 'function') {
return false;
}
test.add(100);
test.add(50);
test.add(300);
test.remove(100);
return test.inorder().join('') == 50300;
})()
);
--seed--
--after-user-code--
BinarySearchTree.prototype = Object.assign(
BinarySearchTree.prototype,
{
add: function(value) {
var node = this.root;
if (node == null) {
this.root = new Node(value);
return;
} else {
function searchTree(node) {
if (value < node.value) {
if (node.left == null) {
node.left = new Node(value);
return;
} else if (node.left != null) {
return searchTree(node.left);
}
} else if (value > node.value) {
if (node.right == null) {
node.right = new Node(value);
return;
} else if (node.right != null) {
return searchTree(node.right);
}
} else {
return null;
}
}
return searchTree(node);
}
},
inorder: function() {
if (this.root == null) {
return null;
} else {
var result = new Array();
function traverseInOrder(node) {
if (node.left != null) {
traverseInOrder(node.left);
}
result.push(node.value);
if (node.right != null) {
traverseInOrder(node.right);
}
}
traverseInOrder(this.root);
return result;
}
},
isBinarySearchTree() {
if (this.root == null) {
return null;
} else {
var check = true;
function checkTree(node) {
if (node.left != null) {
var left = node.left;
if (left.value > node.value) {
check = false;
} else {
checkTree(left);
}
}
if (node.right != null) {
var right = node.right;
if (right.value < node.value) {
check = false;
} else {
checkTree(right);
}
}
}
checkTree(this.root);
return check;
}
}
}
);
--seed-contents--
var displayTree = tree => console.log(JSON.stringify(tree, null, 2));
function Node(value) {
this.value = value;
this.left = null;
this.right = null;
}
function BinarySearchTree() {
this.root = null;
this.remove = function(value) {
if (this.root === null) {
return null;
}
var target;
var parent = null;
// Find the target value and its parent
(function findValue(node = this.root) {
if (value == node.value) {
target = node;
} else if (value < node.value && node.left !== null) {
parent = node;
return findValue(node.left);
} else if (value < node.value && node.left === null) {
return null;
} else if (value > node.value && node.right !== null) {
parent = node;
return findValue(node.right);
} else {
return null;
}
}.bind(this)());
if (target === null) {
return null;
}
// Count the children of the target to delete
var children =
(target.left !== null ? 1 : 0) + (target.right !== null ? 1 : 0);
// Case 1: Target has no children
if (children === 0) {
if (target == this.root) {
this.root = null;
} else {
if (parent.left == target) {
parent.left = null;
} else {
parent.right = null;
}
}
}
// Case 2: Target has one child
else if (children == 1) {
var newChild = target.left !== null ? target.left : target.right;
if (parent === null) {
target.value = newChild.value;
target.left = null;
target.right = null;
} else if (newChild.value < parent.value) {
parent.left = newChild;
} else {
parent.right = newChild;
}
target = null;
}
// Case 3: Target has two children
// Only change code below this line
};
}
--solutions--
// solution required