* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
372 lines
11 KiB
Markdown
372 lines
11 KiB
Markdown
---
|
||
id: 587d8256367417b2b2512c7a
|
||
title: 在二叉搜索树中查找最小值和最大值
|
||
challengeType: 1
|
||
videoUrl: ''
|
||
dashedName: find-the-minimum-and-maximum-value-in-a-binary-search-tree
|
||
---
|
||
|
||
# --description--
|
||
|
||
这一系列挑战将介绍树数据结构。树木是计算机科学中重要且通用的数据结构。当然,他们的名字来源于这样一个事实:当他们看到它们时,它们看起来很像我们在自然界中熟悉的树木。树数据结构以一个节点(通常称为根)开始,并从此处分支到其他节点,每个节点可以具有更多子节点,依此类推。数据结构通常以顶部的根节点可视化;你可以把它想象成一棵倒置的天然树。首先,让我们描述一下我们将在树上遇到的一些常用术语。根节点是树的顶部。树中的数据点称为节点。具有通向其他节点的分支的节点被称为分支通向的节点的父节点(子节点)。其他更复杂的家庭术语适用于您所期望的。子树是指特定节点的所有后代,分支可以称为边,而叶节点是树末端没有子节点的节点。最后,请注意树本质上是递归数据结构。也就是说,节点的任何子节点都是其子树的父节点,依此类推。在为常见树操作设计算法时,树的递归性质非常重要。首先,我们将讨论一种特定类型的树,即二叉树。实际上,我们实际上将讨论一个特定的二叉树,一个二叉搜索树。让我们来描述这意味着什么。虽然树数据结构可以在单个节点上具有任意数量的分支,但是二叉树对于每个节点只能具有两个分支。此外,针对子子树排序二叉搜索树,使得左子树中的每个节点的值小于或等于父节点的值,并且右子树中的每个节点的值是大于或等于父节点的值。
|
||
|
||
现在这个有序的关系很容易看到。请注意,根节点8左侧的每个值都小于8,右侧的每个值都大于8.还要注意,此关系也适用于每个子树。例如,第一个左子项是子树。 3是父节点,它有两个子节点 - 通过控制二进制搜索树的规则,我们知道甚至没有看到这个节点的左子节点(及其任何子节点)将小于3,右边child(及其任何子级)将大于3(但也小于结构的根值),依此类推。二进制搜索树是非常常见且有用的数据结构,因为它们在几种常见操作(例如查找,插入和删除)的平均情况下提供对数时间。说明:我们将从简单开始。除了为树创建节点的函数之外,我们还在这里定义了二叉搜索树结构的骨架。观察每个节点可能具有左右值。如果它们存在,将为它们分配子子树。在我们的二叉搜索树中,定义两个方法, `findMin`和`findMax` 。这些方法应返回二叉搜索树中保存的最小值和最大值(不用担心现在向树中添加值,我们在后台添加了一些值)。如果遇到困难,请反思二进制搜索树必须为true的不变量:每个左子树小于或等于其父树,每个右子树大于或等于其父树。我们还要说我们的树只能存储整数值。如果树为空,则任一方法都应返回`null` 。
|
||
|
||
# --hints--
|
||
|
||
存在`BinarySearchTree`数据结构。
|
||
|
||
```js
|
||
assert(
|
||
(function () {
|
||
var test = false;
|
||
if (typeof BinarySearchTree !== 'undefined') {
|
||
test = new BinarySearchTree();
|
||
}
|
||
return typeof test == 'object';
|
||
})()
|
||
);
|
||
```
|
||
|
||
二叉搜索树有一个名为`findMin`的方法。
|
||
|
||
```js
|
||
assert(
|
||
(function () {
|
||
var test = false;
|
||
if (typeof BinarySearchTree !== 'undefined') {
|
||
test = new BinarySearchTree();
|
||
} else {
|
||
return false;
|
||
}
|
||
return typeof test.findMin == 'function';
|
||
})()
|
||
);
|
||
```
|
||
|
||
二叉搜索树有一个名为`findMax`的方法。
|
||
|
||
```js
|
||
assert(
|
||
(function () {
|
||
var test = false;
|
||
if (typeof BinarySearchTree !== 'undefined') {
|
||
test = new BinarySearchTree();
|
||
} else {
|
||
return false;
|
||
}
|
||
return typeof test.findMax == 'function';
|
||
})()
|
||
);
|
||
```
|
||
|
||
`findMin`方法返回二叉搜索树中的最小值。
|
||
|
||
```js
|
||
assert(
|
||
(function () {
|
||
var test = false;
|
||
if (typeof BinarySearchTree !== 'undefined') {
|
||
test = new BinarySearchTree();
|
||
} else {
|
||
return false;
|
||
}
|
||
if (typeof test.findMin !== 'function') {
|
||
return false;
|
||
}
|
||
test.add(4);
|
||
test.add(1);
|
||
test.add(7);
|
||
test.add(87);
|
||
test.add(34);
|
||
test.add(45);
|
||
test.add(73);
|
||
test.add(8);
|
||
return test.findMin() == 1;
|
||
})()
|
||
);
|
||
```
|
||
|
||
`findMax`方法返回二叉搜索树中的最大值。
|
||
|
||
```js
|
||
assert(
|
||
(function () {
|
||
var test = false;
|
||
if (typeof BinarySearchTree !== 'undefined') {
|
||
test = new BinarySearchTree();
|
||
} else {
|
||
return false;
|
||
}
|
||
if (typeof test.findMax !== 'function') {
|
||
return false;
|
||
}
|
||
test.add(4);
|
||
test.add(1);
|
||
test.add(7);
|
||
test.add(87);
|
||
test.add(34);
|
||
test.add(45);
|
||
test.add(73);
|
||
test.add(8);
|
||
return test.findMax() == 87;
|
||
})()
|
||
);
|
||
```
|
||
|
||
`findMin`和`findMax`方法为空树返回`null` 。
|
||
|
||
```js
|
||
assert(
|
||
(function () {
|
||
var test = false;
|
||
if (typeof BinarySearchTree !== 'undefined') {
|
||
test = new BinarySearchTree();
|
||
} else {
|
||
return false;
|
||
}
|
||
if (typeof test.findMin !== 'function') {
|
||
return false;
|
||
}
|
||
if (typeof test.findMax !== 'function') {
|
||
return false;
|
||
}
|
||
return test.findMin() == null && test.findMax() == null;
|
||
})()
|
||
);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --after-user-code--
|
||
|
||
```js
|
||
BinarySearchTree.prototype = Object.assign(
|
||
BinarySearchTree.prototype,
|
||
{
|
||
add: function(value) {
|
||
function searchTree(node) {
|
||
if (value < node.value) {
|
||
if (node.left == null) {
|
||
node.left = new Node(value);
|
||
return;
|
||
} else if (node.left != null) {
|
||
return searchTree(node.left);
|
||
}
|
||
} else if (value > node.value) {
|
||
if (node.right == null) {
|
||
node.right = new Node(value);
|
||
return;
|
||
} else if (node.right != null) {
|
||
return searchTree(node.right);
|
||
}
|
||
} else {
|
||
return null;
|
||
}
|
||
}
|
||
|
||
var node = this.root;
|
||
if (node == null) {
|
||
this.root = new Node(value);
|
||
return;
|
||
} else {
|
||
return searchTree(node);
|
||
}
|
||
}
|
||
}
|
||
);
|
||
```
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
var displayTree = tree => console.log(JSON.stringify(tree, null, 2));
|
||
function Node(value) {
|
||
this.value = value;
|
||
this.left = null;
|
||
this.right = null;
|
||
}
|
||
function BinarySearchTree() {
|
||
this.root = null;
|
||
// Only change code below this line
|
||
|
||
// Only change code above this line
|
||
}
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
var displayTree = tree => console.log(JSON.stringify(tree, null, 2));
|
||
|
||
function Node(value) {
|
||
this.value = value;
|
||
this.left = null;
|
||
this.right = null;
|
||
}
|
||
|
||
function BinarySearchTree() {
|
||
this.root = null;
|
||
this.findMin = function() {
|
||
// Empty tree.
|
||
if (!this.root) {
|
||
return null;
|
||
}
|
||
let currentNode = this.root;
|
||
while (currentNode.left) {
|
||
currentNode = currentNode.left;
|
||
}
|
||
return currentNode.value;
|
||
};
|
||
this.findMax = function() {
|
||
// Empty tree.
|
||
if (!this.root) {
|
||
return null;
|
||
}
|
||
let currentNode = this.root;
|
||
while (currentNode.right) {
|
||
currentNode = currentNode.right;
|
||
}
|
||
return currentNode.value;
|
||
};
|
||
this.add = function(value) {
|
||
// Empty tree.
|
||
if (!this.root) {
|
||
this.root = new Node(value);
|
||
return undefined;
|
||
}
|
||
return this.addNode(this.root, value);
|
||
};
|
||
this.addNode = function(node, value) {
|
||
// Check if value already exists.
|
||
if (node.value === value) return null;
|
||
if (value < node.value) {
|
||
if (node.left) {
|
||
return this.addNode(node.left, value);
|
||
} else {
|
||
node.left = new Node(value);
|
||
return undefined;
|
||
}
|
||
} else {
|
||
if (node.right) {
|
||
return this.addNode(node.right, value);
|
||
} else {
|
||
node.right = new Node(value);
|
||
return undefined;
|
||
}
|
||
}
|
||
};
|
||
this.isPresent = function(value) {
|
||
if (!this.root) {
|
||
return null;
|
||
}
|
||
return this.isNodePresent(this.root, value);
|
||
};
|
||
this.isNodePresent = function(node, value) {
|
||
if (node.value === value) return true;
|
||
if (value < node.value) {
|
||
return node.left ? this.isNodePresent(node.left, value) : false;
|
||
} else {
|
||
return node.right ? this.isNodePresent(node.right, value) : false;
|
||
}
|
||
return false;
|
||
};
|
||
this.findMinHeight = function() {
|
||
if (!this.root) {
|
||
return -1;
|
||
}
|
||
let heights = {};
|
||
let height = 0;
|
||
this.traverseTree(this.root, height, heights);
|
||
return Math.min(...Object.keys(heights));
|
||
};
|
||
this.findMaxHeight = function() {
|
||
if (!this.root) {
|
||
return -1;
|
||
}
|
||
let heights = {};
|
||
let height = 0;
|
||
this.traverseTree(this.root, height, heights);
|
||
return Math.max(...Object.keys(heights));
|
||
};
|
||
this.traverseTree = function(node, height, heights) {
|
||
if (node.left === null && node.right === null) {
|
||
return (heights[height] = true);
|
||
}
|
||
if (node.left) {
|
||
this.traverseTree(node.left, height + 1, heights);
|
||
}
|
||
if (node.right) {
|
||
this.traverseTree(node.right, height + 1, heights);
|
||
}
|
||
};
|
||
this.isBalanced = function() {
|
||
return this.findMaxHeight() > this.findMinHeight() + 1;
|
||
};
|
||
// DFS tree traversal.
|
||
this.inorder = function() {
|
||
if (!this.root) return null;
|
||
let result = [];
|
||
|
||
function traverseInOrder(node) {
|
||
if (node.left) traverseInOrder(node.left);
|
||
result.push(node.value);
|
||
if (node.right) traverseInOrder(node.right);
|
||
}
|
||
traverseInOrder(this.root);
|
||
return result;
|
||
};
|
||
this.preorder = function() {
|
||
if (!this.root) return null;
|
||
let result = [];
|
||
|
||
function traverseInOrder(node) {
|
||
result.push(node.value);
|
||
if (node.left) traverseInOrder(node.left);
|
||
if (node.right) traverseInOrder(node.right);
|
||
}
|
||
traverseInOrder(this.root);
|
||
return result;
|
||
};
|
||
this.postorder = function() {
|
||
if (!this.root) return null;
|
||
let result = [];
|
||
|
||
function traverseInOrder(node) {
|
||
if (node.left) traverseInOrder(node.left);
|
||
if (node.right) traverseInOrder(node.right);
|
||
result.push(node.value);
|
||
}
|
||
traverseInOrder(this.root);
|
||
return result;
|
||
};
|
||
// BFS tree traversal.
|
||
this.levelOrder = function() {
|
||
if (!this.root) return null;
|
||
let queue = [this.root];
|
||
let result = [];
|
||
while (queue.length) {
|
||
let node = queue.shift();
|
||
result.push(node.value);
|
||
if (node.left) queue.push(node.left);
|
||
if (node.right) queue.push(node.right);
|
||
}
|
||
return result;
|
||
};
|
||
this.reverseLevelOrder = function() {
|
||
if (!this.root) return null;
|
||
let queue = [this.root];
|
||
let result = [];
|
||
while (queue.length) {
|
||
let node = queue.shift();
|
||
result.push(node.value);
|
||
if (node.right) queue.push(node.right);
|
||
if (node.left) queue.push(node.left);
|
||
}
|
||
return result;
|
||
};
|
||
// Delete a leaf node.
|
||
}
|
||
let bst = new BinarySearchTree();
|
||
```
|