* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
7.7 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
587d8257367417b2b2512c7e | 在二叉搜索树中使用深度优先搜索 | 1 | use-depth-first-search-in-a-binary-search-tree |
--description--
我们知道如何在二叉搜索树中搜索特定值。但是,如果我们只想探索整棵树呢?或者,如果我们没有有序树,我们只需要搜索一个值?这里我们将介绍一些可用于探索树数据结构的树遍历方法。首先是深度优先搜索。在深度优先搜索中,在搜索继续到另一个子树之前,尽可能深地探索给定子树。有三种方法可以完成:按顺序:从最左边的节点开始搜索,到最右边的节点结束。预购:在树叶前探索所有的根。下订单:在根之前探索所有的叶子。您可能会猜到,您可以选择不同的搜索方法,具体取决于树存储的数据类型以及您要查找的内容。对于二叉搜索树,inorder遍历以排序顺序返回节点。说明:这里我们将在二叉搜索树上创建这三种搜索方法。深度优先搜索是一种固有的递归操作,只要子节点存在,它就会继续探索更多的子树。一旦理解了这个基本概念,您就可以简单地重新排列探索节点和子树的顺序,以生成上述三个搜索中的任何一个。例如,在后序搜索中,我们希望在开始返回任何节点本身之前一直递归到叶节点,而在预订搜索中,我们希望首先返回节点,然后继续递归在树下。在我们的树上定义inorder
, preorder
和postorder
方法。这些方法中的每一个都应该返回表示树遍历的项数组。确保返回数组中每个节点的整数值,而不是节点本身。最后,如果树为空,则返回null
。
--hints--
存在BinarySearchTree
数据结构。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
}
return typeof test == 'object';
})()
);
二叉搜索树有一个名为inorder
的方法。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
return typeof test.inorder == 'function';
})()
);
二叉搜索树有一个名为preorder
的方法。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
return typeof test.preorder == 'function';
})()
);
二叉搜索树有一个名为postorder
的方法。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
return typeof test.postorder == 'function';
})()
);
inorder
方法返回由inorder遍历产生的节点值数组。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.inorder !== 'function') {
return false;
}
test.add(7);
test.add(1);
test.add(9);
test.add(0);
test.add(3);
test.add(8);
test.add(10);
test.add(2);
test.add(5);
test.add(4);
test.add(6);
return test.inorder().join('') == '012345678910';
})()
);
preorder
方法返回由前序遍历产生的节点值数组。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.preorder !== 'function') {
return false;
}
test.add(7);
test.add(1);
test.add(9);
test.add(0);
test.add(3);
test.add(8);
test.add(10);
test.add(2);
test.add(5);
test.add(4);
test.add(6);
return test.preorder().join('') == '710325469810';
})()
);
postorder
方法返回由后序遍历产生的节点值数组。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.postorder !== 'function') {
return false;
}
test.add(7);
test.add(1);
test.add(9);
test.add(0);
test.add(3);
test.add(8);
test.add(10);
test.add(2);
test.add(5);
test.add(4);
test.add(6);
return test.postorder().join('') == '024653181097';
})()
);
inorder
方法为空树返回null
。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.inorder !== 'function') {
return false;
}
return test.inorder() == null;
})()
);
preorder
方法为空树返回null
。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.preorder !== 'function') {
return false;
}
return test.preorder() == null;
})()
);
postorder
方法为空树返回null
。
assert(
(function () {
var test = false;
if (typeof BinarySearchTree !== 'undefined') {
test = new BinarySearchTree();
} else {
return false;
}
if (typeof test.postorder !== 'function') {
return false;
}
return test.postorder() == null;
})()
);
--seed--
--after-user-code--
BinarySearchTree.prototype = Object.assign(
BinarySearchTree.prototype,
{
add: function(value) {
function searchTree(node) {
if (value < node.value) {
if (node.left == null) {
node.left = new Node(value);
return;
} else if (node.left != null) {
return searchTree(node.left);
}
} else if (value > node.value) {
if (node.right == null) {
node.right = new Node(value);
return;
} else if (node.right != null) {
return searchTree(node.right);
}
} else {
return null;
}
}
var node = this.root;
if (node == null) {
this.root = new Node(value);
return;
} else {
return searchTree(node);
}
}
}
);
--seed-contents--
var displayTree = tree => console.log(JSON.stringify(tree, null, 2));
function Node(value) {
this.value = value;
this.left = null;
this.right = null;
}
function BinarySearchTree() {
this.root = null;
// Only change code below this line
// Only change code above this line
}
--solutions--
var displayTree = tree => console.log(JSON.stringify(tree, null, 2));
function Node(value) {
this.value = value;
this.left = null;
this.right = null;
}
function BinarySearchTree() {
this.root = null;
this.result = [];
this.inorder = function(node) {
if (!node) node = this.root;
if (!node) return null;
if (node.left) this.inorder(node.left);
this.result.push(node.value);
if (node.right) this.inorder(node.right);
return this.result;
};
this.preorder = function(node) {
if (!node) node = this.root;
if (!node) return null;
this.result.push(node.value);
if (node.left) this.preorder(node.left);
if (node.right) this.preorder(node.right);
return this.result;
};
this.postorder = function(node) {
if (!node) node = this.root;
if (!node) return null;
if (node.left) this.postorder(node.left);
if (node.right) this.postorder(node.right);
this.result.push(node.value);
return this.result;
};
}