freeCodeCamp/curriculum/challenges/chinese/10-coding-interview-prep/project-euler/problem-115-counting-block-combinations-ii.md
Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.1 KiB
Raw Blame History

id, title, challengeType, videoUrl, dashedName
id title challengeType videoUrl dashedName
5900f3df1000cf542c50fef1 问题115计数块组合II 5 problem-115-counting-block-combinations-ii

--description--

注意这是问题114的更难的版本。测量n个单位长度的行具有红色块其上放置最小长度为m个单位使得任何两个红色块允许不同长度被分开至少有一个黑色方块。让fill-count函数Fmn表示可以填充行的方式的数量。例如F3,29= 673135和F3,30= 1089155.也就是说对于m = 3可以看出n = 30是填充计数函数首次超过的最小值一百万。同样对于m = 10可以验证F10,56= 880711和F10,57= 1148904因此n = 57是填充计数函数首次超过的最小值一百万。对于m = 50找到填充计数函数首先超过一百万的n的最小值。

--hints--

euler115()应返回168。

assert.strictEqual(euler115(), 168);

--seed--

--seed-contents--

function euler115() {

  return true;
}

euler115();

--solutions--

// solution required