* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.1 KiB
1.1 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f3df1000cf542c50fef1 | 问题115:计数块组合II | 5 | problem-115-counting-block-combinations-ii |
--description--
注意:这是问题114的更难的版本。测量n个单位长度的行具有红色块,其上放置最小长度为m个单位,使得任何两个红色块(允许不同长度)被分开至少有一个黑色方块。让fill-count函数F(m,n)表示可以填充行的方式的数量。例如,F(3,29)= 673135和F(3,30)= 1089155.也就是说,对于m = 3,可以看出n = 30是填充计数函数首次超过的最小值一百万。同样,对于m = 10,可以验证F(10,56)= 880711和F(10,57)= 1148904,因此n = 57是填充计数函数首次超过的最小值一百万。对于m = 50,找到填充计数函数首先超过一百万的n的最小值。
--hints--
euler115()
应返回168。
assert.strictEqual(euler115(), 168);
--seed--
--seed-contents--
function euler115() {
return true;
}
euler115();
--solutions--
// solution required