* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.0 KiB
1.0 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f3ee1000cf542c50ff00 | 问题130:具有主要repunit属性的复合材料 | 5 | problem-130-composites-with-prime-repunit-property |
--description--
完全由1组成的数字称为repunit。我们将R(k)定义为长度k的重新定位;例如,R(6)= 111111.假设n是正整数且GCD(n,10)= 1,则可以证明总是存在一个值k,其中R(k)可被n整除让A(n)成为k的最小值;例如,A(7)= 6和A(41)= 5.对于所有素数,p> 5,p-1可以被A(p)整除。例如,当p = 41时,A(41)= 5,并且40可被5整除。但是,也有罕见的复合值,这也是正确的;前五个例子是91,259,451,481和703.找到n的前25个复合值之和,其中GCD(n,10)= 1,n-1可被A(n)整除。
--hints--
euler130()
应返回149253。
assert.strictEqual(euler130(), 149253);
--seed--
--seed-contents--
function euler130() {
return true;
}
euler130();
--solutions--
// solution required