freeCodeCamp/curriculum/challenges/chinese/10-coding-interview-prep/project-euler/problem-130-composites-with-prime-repunit-property.md
Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.0 KiB
Raw Blame History

id, title, challengeType, videoUrl, dashedName
id title challengeType videoUrl dashedName
5900f3ee1000cf542c50ff00 问题130具有主要repunit属性的复合材料 5 problem-130-composites-with-prime-repunit-property

--description--

完全由1组成的数字称为repunit。我们将Rk定义为长度k的重新定位;例如R6= 111111.假设n是正整数且GCDn10= 1则可以证明总是存在一个值k其中Rk可被n整除让An成为k的最小值;例如A7= 6和A41= 5.对于所有素数p> 5p-1可以被Ap整除。例如当p = 41时A41= 5并且40可被5整除。但是也有罕见的复合值这也是正确的;前五个例子是91,259,451,481和703.找到n的前25个复合值之和其中GCDn10= 1n-1可被An整除。

--hints--

euler130()应返回149253。

assert.strictEqual(euler130(), 149253);

--seed--

--seed-contents--

function euler130() {

  return true;
}

euler130();

--solutions--

// solution required