* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.1 KiB
1.1 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f3f51000cf542c50ff08 | 问题137:斐波那契金块 | 5 | problem-137-fibonacci-golden-nuggets |
--description--
考虑无穷多项式系列AF(x)= xF1 + x2F2 + x3F3 + ...,其中Fk是斐波纳契数列中的第k项:1,1,2,3,5,8,...;也就是说,Fk = Fk-1 + Fk-2,F1 = 1且F2 = 1.对于这个问题,我们将对x的值感兴趣,其中AF(x)是正整数。令人惊讶的是AF(1/2)=(1/2).1 +(1/2)2.1 +(1/2)3.2 +(1/2)4.3 +(1/2)5.5 + ......
= 1/2 + 1/4 + 2/8 + 3/16 + 5/32 + ......
= 2前五个自然数的x的相应值如下所示。
xAF(x)√2-111/ 22(√13-2)/ 33(√89-5)/ 84(√34-3)/ 55
如果x是理性的,我们将AF(x)称为金块,因为它们变得越来越稀少;例如,第10个金块是74049690.找到第15个金块。
--hints--
euler137()
应该返回1120149658760。
assert.strictEqual(euler137(), 1120149658760);
--seed--
--seed-contents--
function euler137() {
return true;
}
euler137();
--solutions--
// solution required