Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.1 KiB
Raw Blame History

id, title, challengeType, videoUrl, dashedName
id title challengeType videoUrl dashedName
5900f3f51000cf542c50ff08 问题137斐波那契金块 5 problem-137-fibonacci-golden-nuggets

--description--

考虑无穷多项式系列AFx= xF1 + x2F2 + x3F3 + ...其中Fk是斐波纳契数列中的第k项1,1,2,3,5,8...;也就是说Fk = Fk-1 + Fk-2F1 = 1且F2 = 1.对于这个问题我们将对x的值感兴趣其中AFx是正整数。令人惊讶的是AF1/2=1/2.1 +1/22.1 +1/23.2 +1/24.3 +1/25.5 + ......

= 1/2 + 1/4 + 2/8 + 3/16 + 5/32 + ......

= 2前五个自然数的x的相应值如下所示。

xAFx√2-111/ 22√13-2/ 33√89-5/ 84√34-3/ 55

如果x是理性的我们将AFx称为金块因为它们变得越来越稀少;例如第10个金块是74049690.找到第15个金块。

--hints--

euler137()应该返回1120149658760。

assert.strictEqual(euler137(), 1120149658760);

--seed--

--seed-contents--

function euler137() {

  return true;
}

euler137();

--solutions--

// solution required