* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.1 KiB
1.1 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f41a1000cf542c50ff2d | 问题174:计算可以形成一个,两个,三个......不同排列的“空心”方形薄片的数量 | 5 | problem-174-counting-the-number-of-hollow-square-laminae-that-can-form-one-two-three-----distinct-arrangements |
--description--
我们将方形薄片定义为具有方形“孔”的方形轮廓,使得该形状具有垂直和水平对称性。给定八个瓷砖,可以仅以一种方式形成薄层:3x3正方形,中间有1x1个孔。但是,使用32个瓷砖可以形成两个不同的薄片。
如果t表示使用的瓦片数,我们将说t = 8是类型L(1)并且t = 32是类型L(2)。令N(n)为t≤1000000的数,使得t为L(n)型;例如,N(15)= 832.对于1≤n≤10,ΣN(n)是多少?
--hints--
euler174()
应该返回209566。
assert.strictEqual(euler174(), 209566);
--seed--
--seed-contents--
function euler174() {
return true;
}
euler174();
--solutions--
// solution required