* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
961 B
961 B
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f43c1000cf542c50ff4e | 问题207:整数分区方程 | 5 | problem-207-integer-partition-equations |
--description--
对于一些正整数k,存在形式为4t = 2t + k的整数分区,其中4t,2t和k都是正整数而t是实数。
前两个这样的分区是41 = 21 + 2和41.5849625 ...... = 21.5849625 ... + 6。
t也是整数的分区称为完美。对于任何m≥1,让P(m)为k≤m的完美分区的比例。因此P(6)= 1/2。
在下表中列出了一些P(m)P(5)= 1/1 P(10)= 1/2 P(15)= 2/3 P(20)= 1/2 P(25)= 1/2 P(30)= 2/5 ... P(180)= 1/4 P(185)= 3/13
找到P(m)<1/12345的最小m
--hints--
euler207()
应该返回44043947822。
assert.strictEqual(euler207(), 44043947822);
--seed--
--seed-contents--
function euler207() {
return true;
}
euler207();
--solutions--
// solution required