* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
943 B
943 B
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f4511000cf542c50ff63 | 问题228:Minkowski Sums | 5 | problem-228-minkowski-sums |
--description--
设Sn是常规的n边多边形 - 或形状 - 其顶点
vk(k = 1,2,...,n)有坐标:
xk = cos( 2k-1/n ×180° ) yk = sin( 2k-1/n ×180° )
每个Sn都被解释为由周边和内部的所有点组成的填充形状。
两个形状S和T的Minkowski和S + T是结果
将S中的每个点添加到T中的每个点,其中以坐标方式执行点添加:
(u,v)+(x,y)=(u + x,v + y)。
例如,S3和S4的总和是六边形,如下面粉红色所示:
S1864 + S1865 + ... + S1909有多少方面?
--hints--
euler228()
应返回86226。
assert.strictEqual(euler228(), 86226);
--seed--
--seed-contents--
function euler228() {
return true;
}
euler228();
--solutions--
// solution required