* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.0 KiB
1.0 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f4571000cf542c50ff69 | 问题234:半透明数字 | 5 | problem-234-semidivisible-numbers |
--description--
对于n≥4的整数,我们定义n的下素数根,用lps(n)表示,最大素数≤√n和n的上素数根,ups(n),作为最小素数≥ √N。因此,例如,lps(4)= 2 = ups(4),lps(1000)= 31,ups(1000)= 37.让我们称一个整数n≥4半可分,如果lps(n)和ups之一(n)除n,但不是两者。
不可超过15的半可分数之和为30,数字为8,10和12. 15不是半可分的,因为它是lps(15)= 3和ups(15)= 5的倍数。作为另一个例子,最多1000个的92个半可见数字的总和是34825。
所有半数均不超过999966663333的总和是多少?
--hints--
euler234()
应该返回1259187438574927000。
assert.strictEqual(euler234(), 1259187438574927000);
--seed--
--seed-contents--
function euler234() {
return true;
}
euler234();
--solutions--
// solution required