Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.0 KiB
Raw Blame History

id, title, challengeType, videoUrl, dashedName
id title challengeType videoUrl dashedName
5900f4571000cf542c50ff69 问题234半透明数字 5 problem-234-semidivisible-numbers

--description--

对于n≥4的整数我们定义n的下素数根用lpsn表示最大素数≤√n和n的上素数根upsn作为最小素数≥ √N。因此例如lps4= 2 = ups4lps1000= 31ups1000= 37.让我们称一个整数n≥4半可分如果lpsn和ups之一n除n但不是两者。

不可超过15的半可分数之和为30数字为8,10和12. 15不是半可分的因为它是lps15= 3和ups15= 5的倍数。作为另一个例子最多1000个的92个半可见数字的总和是34825。

所有半数均不超过999966663333的总和是多少

--hints--

euler234()应该返回1259187438574927000。

assert.strictEqual(euler234(), 1259187438574927000);

--seed--

--seed-contents--

function euler234() {

  return true;
}

euler234();

--solutions--

// solution required