* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
953 B
953 B
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f46b1000cf542c50ff7d | 问题254:数字因子的总和 | 5 | problem-254-sums-of-digit-factorials |
--description--
将f(n)定义为n的数字的阶乘的总和。例如,f(342)= 3! + 4! + 2! = 32。
将sf(n)定义为f(n)的数字之和。所以sf(342)= 3 + 2 = 5。
将g(i)定义为最小的正整数n,使得sf(n)= i。虽然sf(342)是5,但sf(25)也是5,并且可以证实g(5)是25。
将sg(i)定义为g(i)的数字之和。所以sg(5)= 2 + 5 = 7。
此外,可以证实g(20)是267并且1≤i≤20的Σsg(i)是156。
什么是Σsg(i)1≤i≤150?
--hints--
euler254()
应该返回8184523820510。
assert.strictEqual(euler254(), 8184523820510);
--seed--
--seed-contents--
function euler254() {
return true;
}
euler254();
--solutions--
// solution required