* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
43 lines
972 B
Markdown
43 lines
972 B
Markdown
---
|
||
id: 5900f46e1000cf542c50ff80
|
||
title: 问题257:角度平分器
|
||
challengeType: 5
|
||
videoUrl: ''
|
||
dashedName: problem-257-angular-bisectors
|
||
---
|
||
|
||
# --description--
|
||
|
||
给定是一个整数边三角形ABC,边a≤b≤c。 (AB = c,BC = a且AC = b)。三角形的角平分线在点E,F和G处与两侧相交(见下图)。
|
||
|
||
段EF,EG和FG将三角形ABC划分为四个较小的三角形:AEG,BFE,CGF和EFG。可以证明,对于这四个三角形中的每一个,比率区域(ABC)/面积(子三角形)是合理的。然而,存在这些比率中的一些或全部是积分的三角形。
|
||
|
||
存在多少个周长≤100,000,000的三角形ABC,以便比率面积(ABC)/面积(AEG)是整数?
|
||
|
||
# --hints--
|
||
|
||
`euler257()`应该返回139012411。
|
||
|
||
```js
|
||
assert.strictEqual(euler257(), 139012411);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function euler257() {
|
||
|
||
return true;
|
||
}
|
||
|
||
euler257();
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
// solution required
|
||
```
|