* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
815 B
815 B
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f47e1000cf542c50ff90 | 问题273:正方形的总和 | 5 | problem-273-sum-of-squares |
--description--
考虑以下形式的方程:a2 + b2 = N,0≤a≤b,a,b和N整数。
对于N = 65,有两种解决方案:a = 1,b = 8,a = 4,b = 7。我们将S(N)称为a2 + b2 = N,0≤a≤b,a,b和N整数的所有解的a的值之和。因此,S(65)= 1 + 4 = 5.找到ΣS(N),对于所有无平均N,只能被4k + 1形式的素数整除,其中4k + 1 <150。
--hints--
euler273()
应该返回2032447591196869000。
assert.strictEqual(euler273(), 2032447591196869000);
--seed--
--seed-contents--
function euler273() {
return true;
}
euler273();
--solutions--
// solution required