Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.1 KiB
Raw Blame History

id, title, challengeType, videoUrl, dashedName
id title challengeType videoUrl dashedName
5900f48d1000cf542c50ffa0 问题289欧拉循环 5 problem-289-eulerian-cycles

--description--

令Cxy为穿过点xyxy + 1x + 1yx + 1y + 1的圆。

对于正整数m和n令Emn为由m·n个圆组成的配置 {Cxy0≤x <m0≤y <nx和y是整数}

Emn上的欧拉循环是一条闭合路径它恰好通过每个圆弧一次。 Emn上可能有许多这样的路径但是我们只对那些不会自交叉的路径感兴趣 非相交路径仅在格点处触碰自身,但从未相交。

下图显示了E3,3和一个欧拉非交叉路径的示例。

令Lmn为Emn上的欧拉非交叉路径数。 例如L1,2= 2L2,2= 37L3,3= 104290。

找出L6,10mod 1010。

--hints--

euler289()应该返回6567944538。

assert.strictEqual(euler289(), 6567944538);

--seed--

--seed-contents--

function euler289() {

  return true;
}

euler289();

--solutions--

// solution required