* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.1 KiB
1.1 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f48d1000cf542c50ffa0 | 问题289:欧拉循环 | 5 | problem-289-eulerian-cycles |
--description--
令C(x,y)为穿过点(x,y),(x,y + 1),(x + 1,y)和(x + 1,y + 1)的圆。
对于正整数m和n,令E(m,n)为由m·n个圆组成的配置: {C(x,y):0≤x <m,0≤y <n,x和y是整数}
E(m,n)上的欧拉循环是一条闭合路径,它恰好通过每个圆弧一次。 E(m,n)上可能有许多这样的路径,但是我们只对那些不会自交叉的路径感兴趣: 非相交路径仅在格点处触碰自身,但从未相交。
下图显示了E(3,3)和一个欧拉非交叉路径的示例。
令L(m,n)为E(m,n)上的欧拉非交叉路径数。 例如,L(1,2)= 2,L(2,2)= 37,L(3,3)= 104290。
找出L(6,10)mod 1010。
--hints--
euler289()
应该返回6567944538。
assert.strictEqual(euler289(), 6567944538);
--seed--
--seed-contents--
function euler289() {
return true;
}
euler289();
--solutions--
// solution required