Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

57 lines
1.2 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
id: 5900f4931000cf542c50ffa6
title: 问题295透镜孔
challengeType: 5
videoUrl: ''
dashedName: problem-295-lenticular-holes
---
# --description--
如果满足以下条件,我们称两个圆包围的凸面为透镜孔:
两个圆的中心都在晶格点上。
两个圆在两个不同的晶格点处相交。
被两个圆包围的凸区域的内部不包含任何晶格点。
考虑一下圈子: C0x2 + y2 = 25 C1x + 42+y-42 = 1 C2x-122+y-42 = 65
下图绘制了圆圈C0C1和C2。
C0和C1以及C0和C2形成一个透镜孔。
如果存在两个半径为r1和r2且形成一个透镜孔的圆我们将一个有序正实数对r1r2称为透镜对。 我们可以验证155√65是以上示例的双凸透镜对。
令LN为0 &lt;r1≤r2≤N的不同双凸透镜对r1r2的数量。 我们可以验证L10= 30和L100= 3442。
求L100 000
# --hints--
`euler295()`应该返回4884650818。
```js
assert.strictEqual(euler295(), 4884650818);
```
# --seed--
## --seed-contents--
```js
function euler295() {
return true;
}
euler295();
```
# --solutions--
```js
// solution required
```