Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.3 KiB
Raw Blame History

id, title, challengeType, videoUrl, dashedName
id title challengeType videoUrl dashedName
5900f4ab1000cf542c50ffbd 问题3182011个九 5 problem-318-2011-nines

--description--

考虑实数√2+√3。

当我们计算√2+√3的偶数幂时

我们得到:

√2+√32 = 9.898979485566356 ...

√2+√34 = 97.98979485566356 ...

√2+√36 = 969.998969071069263 ...

√2+√38 = 9601.99989585502907 ...

√2+√310 = 95049.999989479221 ...

√2+√312 = 940897.9999989371855 ...

√2+√314 = 9313929.99999989263 ...

√2+√316 = 92198401.99999998915 ...

这些幂的小数部分开头的连续九个数字似乎没有减少。 实际上可以证明√2+√32n的小数部分对于大n接近1。

考虑形式为√p+√q的所有实数其中p和q为正整数且p <q使得小数部分 √p+√q的2n对于大n接近1。

令Cpqn√p+√q2n的小数部分开头的连续九个数字。

令Npq为n的最小值以使Cpqn≥2011。

求p + q≤2011的∑Npq

--hints--

euler318()应该返回709313889。

assert.strictEqual(euler318(), 709313889);

--seed--

--seed-contents--

function euler318() {

  return true;
}

euler318();

--solutions--

// solution required