* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.2 KiB
1.2 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f4b91000cf542c50ffcc | 问题333:特殊分区 | 5 | problem-333-special-partitions |
--description--
可以以这样的方式划分所有正整数:分区的每个项可以表示为2ix3j,其中i,j≥0。
我们只考虑那些没有任何术语可以划分任何其他术语的分区。例如,17 = 2 + 6 + 9 =(21x30 + 21x31 + 20x32)的分区将无效,因为2可以除以6.分区17 = 16 + 1 =(24x30 + 20x30)也不会因为1可以除16. 17的唯一有效分区是8 + 9 =(23x30 + 20x32)。
许多整数具有多个有效分区,第一个是具有以下两个分区的11。 11 = 2 + 9 =(21x30 + 20x32)11 = 8 + 3 =(23x30 + 20x31)
让我们将P(n)定义为n的有效分区数。例如,P(11)= 2。
让我们只考虑具有单个有效分区的素数整数q,例如P(17)。
素数q <100的总和使得P(q)= 1等于233。
找到质数q <1000000的总和,使得P(q)= 1。
--hints--
euler333()
应返回3053105。
assert.strictEqual(euler333(), 3053105);
--seed--
--seed-contents--
function euler333() {
return true;
}
euler333();
--solutions--
// solution required