Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.2 KiB
Raw Blame History

id, title, challengeType, videoUrl, dashedName
id title challengeType videoUrl dashedName
5900f4b91000cf542c50ffcc 问题333特殊分区 5 problem-333-special-partitions

--description--

可以以这样的方式划分所有正整数分区的每个项可以表示为2ix3j其中ij≥0。

我们只考虑那些没有任何术语可以划分任何其他术语的分区。例如17 = 2 + 6 + 9 =21x30 + 21x31 + 20x32的分区将无效因为2可以除以6.分区17 = 16 + 1 =24x30 + 20x30也不会因为1可以除16. 17的唯一有效分区是8 + 9 =23x30 + 20x32

许多整数具有多个有效分区第一个是具有以下两个分区的11。 11 = 2 + 9 =21x30 + 20x3211 = 8 + 3 =23x30 + 20x31

让我们将Pn定义为n的有效分区数。例如P11= 2。

让我们只考虑具有单个有效分区的素数整数q例如P17

素数q <100的总和使得Pq= 1等于233。

找到质数q <1000000的总和使得Pq= 1。

--hints--

euler333()应返回3053105。

assert.strictEqual(euler333(), 3053105);

--seed--

--seed-contents--

function euler333() {

  return true;
}

euler333();

--solutions--

// solution required