* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.1 KiB
1.1 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f4cb1000cf542c50ffdd | 问题350:约束最小和最小 | 5 | problem-350-constraining-the-least-greatest-and-the-greatest-least |
--description--
大小为n的列表是n个自然数的序列。实例是(2,4,6),(2,6,4),(10,6,15,6)和(11)。
列表的最大公约数(或gcd)是划分列表中所有条目的最大自然数。例子:gcd(2,6,4)= 2,gcd(10,6,15,6)= 1,gcd(11)= 11。
列表的最小公倍数或lcm是列表的每个条目可分割的最小自然数。实例:1cm(2,6,4)= 12,1cm(10,6,15,6)= 30和1cm(11)= 11。
设f(G,L,N)为大小为N的列表数,gcd≥G且lcm≤L。例如:
f(10,100,1)= 91.f(10,100,2)= 327.f(10,100,3)= 1135.f(10,100,1000)mod 1014 = 3286053。
找到f(106,1012,1018)mod 1014。
--hints--
euler350()
应该返回84664213。
assert.strictEqual(euler350(), 84664213);
--seed--
--seed-contents--
function euler350() {
return true;
}
euler350();
--solutions--
// solution required