* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.6 KiB
1.6 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f4d91000cf542c50ffeb | 问题363:Bézier曲线 | 5 | problem-363-bzier-curves |
--description--
立方贝塞尔曲线由四个点定义:P0,P1,P2和P3。
曲线构造如下:在段P0P1,P1P2和P2P3上绘制点Q0,Q1和Q2,使得P0Q0 / P0P1 = P1Q1 / P1P2 = P2Q2 / P2P3 = t([0,1]中的t)。在段Q0Q1和Q1Q2上绘制点R0和R1,使得对于相同的t值,Q0R0 / Q0Q1 = Q1R1 / Q1Q2 = t。在段R0R1上绘制点B,使得对于相同的t值,R0B / R0R1 = t。由点P0,P1,P2,P3定义的贝塞尔曲线是B的轨迹,因为Q0占据了段P0P1上的所有可能位置。 (请注意,对于所有点,t的值都相同。)
在此(外部)Web地址,您将找到一个小程序,它允许您拖动点P0,P1,P2和P3,以查看这些点定义的Bézier曲线(绿色曲线)是什么样的。您也可以沿着段P0P1拖动点Q0。
从构造中可以清楚地看出,Bézier曲线将与P0中的P0P1和P3中的P2P3相切。
使用P0 =(1,0),P1 =(1,v),P2 =(v,1)和P3 =(0,1)的三次Bézier曲线来近似四分之一圆。选择值v> 0,使得由线OP0,OP3和曲线包围的区域等于π/ 4(四分之一圆的面积)。
曲线长度与四分之一圆的长度有多少百分比?也就是说,如果L是曲线的长度,则计算100×L - π/2π/ 2给你的答案四舍五入到小数点后面的10位数。
--hints--
euler363()
应返回0.0000372091。
assert.strictEqual(euler363(), 0.0000372091);
--seed--
--seed-contents--
function euler363() {
return true;
}
euler363();
--solutions--
// solution required