* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.5 KiB
1.5 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f4dd1000cf542c50ffef | 问题368:类似肯珀纳的系列 | 5 | problem-368-a-kempner-like-series |
--description--
谐波系列$ 1 + \ dfrac {1} {2} + \ dfrac {1} {3} + \ dfrac {1} {4} + ...众所周知是不同的。
然而,如果我们在这个系列中省略了分母中有9个的每个项,则该系列显着地收敛到大约22.9206766193。这种改进的谐波系列称为肯普纳系列。
现在让我们通过省略分母具有3个或更多相等连续数字的每个项的谐波系列来考虑另一个修正的谐波系列。可以验证在谐波系列的前1200个项中,仅省略20个项。这20个省略的术语是:\\ dfrac {1} {111},\\ dfrac {1} {222},\\ dfrac {1} {333},\\ dfrac {1} {444},\\ dfrac {1} { 555},\\ dfrac {1} {666},\\ dfrac {1} {777},\\ dfrac {1} {888},\\ dfrac {1} {999},\\ dfrac {1} {1000},\\ dfrac {1} {1110},\\ \\ dfrac {1} {1111},\\ dfrac {1} {1112},\\ dfrac {1} {1113},\\ dfrac {1} {1114},\\ dfrac {1} {1115},\\ dfrac {1} {1116},\\ dfrac {1} {1117},\\ dfrac {1} {1118},\\ dfrac {1} {1119}
这个系列也融合了。
找到系列收敛的值。将您的答案四舍五入到小数点后面的10位数。
--hints--
euler368()
应该返回253.6135092068。
assert.strictEqual(euler368(), 253.6135092068);
--seed--
--seed-contents--
function euler368() {
return true;
}
euler368();
--solutions--
// solution required