Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.2 KiB
Raw Blame History

id, title, challengeType, videoUrl, dashedName
id title challengeType videoUrl dashedName
5900f4ee1000cf542c510000 问题385三角形内的椭圆 5 problem-385-ellipses-inside-triangles

--description--

对于平面中的任何三角形T可以显示存在唯一的椭圆其中最大区域完全在T内。

对于给定的n考虑三角形T使得

  • T的顶点具有绝对值≤n的整数坐标
  • T内最大面积椭圆的焦点是√13,0-√13,0。设An为所有这些三角形的面积之和。

例如如果n = 8则存在两个这样的三角形。它们的顶点是-4-3 - 4,38,04,34-3 - 8,0每个三角形的面积因此A8= 36 + 36 = 72。

可以证实A10= 252A100= 34632和A1000= 3529008。

找A1 000 000 000

1椭圆的焦点多个焦点是两个点A和B使得对于椭圆边界上的每个点PAP + PB是恒定的。

--hints--

euler385()应该返回3776957309612154000。

assert.strictEqual(euler385(), 3776957309612154000);

--seed--

--seed-contents--

function euler385() {

  return true;
}

euler385();

--solutions--

// solution required