* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
881 B
881 B
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f5311000cf542c510042 | 问题451:模逆 | 5 | problem-451-modular-inverses |
--description--
考虑数字15.有八个正数小于15,它们与15:1,2,4,7,8,11,13,14相互作用。这些数模15的模数逆是:1,8,4 ,13,2,11,7,14因为1 * 1 mod 15 = 1 2 * 8 = 16 mod 15 = 1 4 * 4 = 16 mod 15 = 1 7 * 13 = 91 mod 15 = 1 11 * 11 = 121 mod 15 = 1 14 * 14 = 196 mod 15 = 1
设I(n)是小于n-1的最大正数m,使得m modulo n的模逆与m本身相等。所以我(15)= 11。我(100)= 51和I(7)= 1。
求3Σn≤2·107的ΣI(n)
--hints--
euler451()
应该返回153651073760956。
assert.strictEqual(euler451(), 153651073760956);
--seed--
--seed-contents--
function euler451() {
return true;
}
euler451();
--solutions--
// solution required