* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
48 lines
1.2 KiB
Markdown
48 lines
1.2 KiB
Markdown
---
|
||
id: 5900f53b1000cf542c51004d
|
||
title: 问题462:3个平滑数的排列
|
||
challengeType: 5
|
||
videoUrl: ''
|
||
dashedName: problem-462-permutation-of-3-smooth-numbers
|
||
---
|
||
|
||
# --description--
|
||
|
||
3平滑数是没有素数因子大于3的整数。对于整数N,我们将S(N)定义为小于或等于N的3平滑数的集合。例如,S(20)= {1,2,3,4,6,8,9,12,16,18}。
|
||
|
||
我们将F(N)定义为S(N)的排列数,其中每个元素都在其所有适当的除数之后。
|
||
|
||
这是N = 20的可能排列之一。
|
||
|
||
- 1,2,4,3,9,8,16,6,18,12。这不是有效的排列,因为12在它的除数6之前出现。
|
||
- 1,2,4,3,9,8,12,16,6,18。
|
||
|
||
我们可以验证F(6)= 5,F(8)= 9,F(20)= 450和F(1000)≈8.8521816557e21。找到F(1018)。给出你的答案,它的科学记数在小数点后四舍五入到十位数。在给出答案时,使用小写e来分隔尾数和指数。例如,如果答案是112,233,445,566,778,899,则答案格式为1.1223344557e17。
|
||
|
||
# --hints--
|
||
|
||
`euler462()`应返回Infinity。
|
||
|
||
```js
|
||
assert.strictEqual(euler462(), Infinity);
|
||
```
|
||
|
||
# --seed--
|
||
|
||
## --seed-contents--
|
||
|
||
```js
|
||
function euler462() {
|
||
|
||
return true;
|
||
}
|
||
|
||
euler462();
|
||
```
|
||
|
||
# --solutions--
|
||
|
||
```js
|
||
// solution required
|
||
```
|