* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.3 KiB
1.3 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f5411000cf542c510052 | 问题467:超级整数 | 5 | problem-467-superinteger |
--description--
如果n的数字形成s的数字的子序列,则整数s被称为另一整数n的超级整数。例如,2718281828是18828的超级整数,而314159不是151的超级整数。
令p(n)为第n个素数,并且令c(n)为第n个复合数。例如,p(1)= 2,p(10)= 29,c(1)= 4且c(10)= 18. {p(i):i≥1} = {2,3,5,7 ,11,13,17,19,23,29,...} {c(i):i≥1} = {4,6,8,9,10,12,14,15,16,18,.... ..}
设PD为{p(i)}的数字根的序列(CD对{c(i)}的定义类似):PD = {2,3,5,7,2,4,8,1,5, 2,...} CD = {4,6,8,9,1,3,5,6,7,9 ......}
令Pn为通过连接PD的前n个元素形成的整数(Cn类似地定义为CD)。 P10 = 2357248152 C10 = 4689135679
设f(n)是最小的正整数,它是Pn和Cn的共同超整数。例如,f(10)= 2357246891352679,并且f(100)mod 1 000 000 007 = 771661825。
求f(10 000)mod 1 000 000 007。
--hints--
euler467()
应该返回775181359。
assert.strictEqual(euler467(), 775181359);
--seed--
--seed-contents--
function euler467() {
return true;
}
euler467();
--solutions--
// solution required