Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1017 B
Raw Blame History

id, title, challengeType, videoUrl, dashedName
id title challengeType videoUrl dashedName
5900f3a51000cf542c50feb8 问题57平方根收敛 5 problem-57-square-root-convergents

--description--

可以证明两个的平方根可以表示为无限连续分数。 √2= 1 + 1 /2 + 1 /2 + 1 /2 + ...= 1.414213 ...通过扩展前四次迭代得到1 + 1/2 = 3 / 2 = 1.5 1 + 1 /2 + 1/2= 7/5 = 1.4 1 + 1 /2 + 1 /2 + 1/2= 17/12 = 1.41666 ... 1 + 1 /2 + 1 /2 + 1 /2 + 1/2= 41/29 = 1.41379 ...接下来的三次扩展是99 / 70,239 / 169和577/408但是第八次扩展1393/985是分子中位数超过分母中位数的第一个例子。在前一千次扩展中有多少分数包含一个数字比分母更多的分子

--hints--

euler57()应返回153。

assert.strictEqual(euler57(), 153);

--seed--

--seed-contents--

function squareRootConvergents() {

  return true;
}

squareRootConvergents();

--solutions--

// solution required