* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
887 B
887 B
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f3ae1000cf542c50fec1 | 问题66:丢番图方程 | 5 | problem-66-diophantine-equation |
--description--
考虑形式的二次丢番图方程:x2 - Dy2 = 1例如,当D = 13时,x中的最小解是6492 - 13×1802 = 1.可以假设当D是正整数时没有解广场。通过在D中找到D = {2,3,5,6,7}的最小解,我们得到以下结果:32 - 2×22 = 1 22 - 3×12 = 192 - 5×42 = 1 52 - 6× 22 = 1 82 - 7×32 = 1因此,通过考虑D中对于D≤7的最小解,当D = 5时获得最大的x。在x的最小解中找到D≤1000的值,其中获得x的最大值。
--hints--
euler66()
应返回661。
assert.strictEqual(euler66(), 661);
--seed--
--seed-contents--
function diophantineEquation() {
return true;
}
diophantineEquation();
--solutions--
// solution required