freeCodeCamp/curriculum/challenges/chinese/10-coding-interview-prep/project-euler/problem-73-counting-fractions-in-a-range.md
Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.2 KiB
Raw Blame History

id, title, challengeType, forumTopicId, dashedName
id title challengeType forumTopicId dashedName
5900f3b61000cf542c50fec8 关卡 73区间内的分数个数 5 302186 problem-73-counting-fractions-in-a-range

--description--

考虑形如 n/d 的分数,其中 n 和 d 均为正整数。如果 n<d,且其最大公约数 HCF(n,d)=1则该分数被称为最简真分数。

如果我们将 d ≤ 8 的最简真分数构成的集合按大小升序列出,将得到:

1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8

可以看出在 1/3 和 1/2 之间有3个分数。

d ≤ 12,000 的最简真分数构成的集合排序后,在 1/3 和 1/2 之间有多少个分数?

--hints--

countingFractionsInARange() 应该返回一个数字。

assert(typeof countingFractionsInARange() === 'number');

countingFractionsInARange() 应该返回 7295372。

assert.strictEqual(countingFractionsInARange(), 7295372);

--seed--

--seed-contents--

function countingFractionsInARange() {

  return true;
}

countingFractionsInARange();

--solutions--

// solution required