* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.1 KiB
1.1 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f3b61000cf542c50fec9 | 问题74:数字因子链 | 5 | problem-74-digit-factorial-chains |
--description--
数字145是众所周知的,其数字的阶乘之和等于145:1! + 4! + 5! = 1 + 24 + 120 = 145也许知名度较低的是169,因为它产生了最长的数字链,可以链接到169;事实证明,只存在三个这样的循环:169→363601→1454→169 871→45361→871 872→45362→872不难证明每个起始编号最终都会陷入循环。例如,69→363600→1454→169→363601(→1454)78→45360→871→45361(→871)540→145(→145)从69开始产生五个非重复项链,但最长起始数低于一百万的非重复链是60个项。起始数低于一百万的链中有多少个包含正好六十个非重复项?
--hints--
euler74()
应返回402。
assert.strictEqual(euler74(), 402);
--seed--
--seed-contents--
function digitFactorialChains() {
return true;
}
digitFactorialChains();
--solutions--
// solution required