* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.1 KiB
1.1 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
5900f3b71000cf542c50feca | 问题75:奇异整数直角三角形 | 5 | problem-75-singular-integer-right-triangles |
--description--
事实证明,12厘米是最小的导线长度,可以弯曲形成一个完整的直角三角形,只有一种方式,但还有更多的例子。 12 cm:(3,4,5)24 cm:(6,8,10)30 cm:(5,12,13)36 cm:(9,12,15)40 cm:(8,15,17) 48厘米:(12,16,20)相比之下,一些长度的线,如20厘米,不能弯曲形成整数个直角三角形,其他长度允许找到多个解决方案;例如,使用120厘米,可以精确地形成三个不同的整数侧直角三角形。 120厘米:(30,40,50),(20,48,52),(24,45,51)假设L是线的长度,L≤1,500,000的多少个数值恰好可以是一个整数的右边角三角形成?
--hints--
euler75()
应返回161667。
assert.strictEqual(euler75(), 161667);
--seed--
--seed-contents--
function singularIntRightTriangles() {
return true;
}
singularIntRightTriangles();
--solutions--
// solution required