* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
5.5 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
59713da0a428c1a62d7db430 | 克莱默的统治 | 5 | cramers-rule |
--description--
在线性代数中 , Cramer规则是一个线性方程组解的显式公式,其中包含与未知数一样多的方程,只要系统具有唯一解,就有效。它通过用方程右边的矢量替换一列来表示(方形)系数矩阵的决定因素和从它获得的矩阵的解决方案。
特定
$ \ left \ {\ begin {matrix} a_1x + b_1y + c_1z&= {\ color {red} d_1} \\ a_2x + b_2y + c_2z&= {\ color {red} d_2} \\ a_3x + b_3y + c_3z&= {\颜色{红} D_3} \ {结束矩阵} \权。$
以矩阵格式表示
$ \ begin {bmatrix} a_1&b_1&c_1 \\ a_2&b_2&c_2 \\ a_3&b_3&c_3 \ end {bmatrix} \ begin {bmatrix} x \\ y \\ z \ end {bmatrix} = \ begin {bmatrix} {\ color {red} d_1} \\ {\ color {red} d_2} \\ {\ color {red} d_3} \ end {bmatrix}。$
然后可以找到$ x,y $和$ z $的值,如下所示:
$ x = \ frac {\ begin {vmatrix} {\ color {red} d_1}&b_1&c_1 \\ {\ color {red} d_2}&b_2&c_2 \\ {\ color {red} d_3}&b_3& c_3 \ end {vmatrix}} {\ begin {vmatrix} a_1&b_1&c_1 \\ a_2&b_2&c_2 \\ a_3&b_3&c_3 \ end {vmatrix}},\ quad y = \ frac {\ begin {vmatrix } a_1&{\ color {red} d_1}&c_1 \\ a_2&{\ color {red} d_2}&c_2 \\ a_3&{\ color {red} d_3}&c_3 \ end {vmatrix}} {\ begin {vmatrix} a_1&b_1&c_1 \\ a_2&b_2&c_2 \\ a_3&b_3&c_3 \ end {vmatrix}},\ text {和} z = \ frac {\ begin {vmatrix} a_1&b_1&{\ color {red} d_1} \\ a_2&b_2&{\ color {red} d_2} \\ a_3&b_3&{\ color {red} d_3} \ end {vmatrix}} {\ begin {vmatrix} a_1&b_1& c_1 \\ a_2&b_2&c_2 \\ a_3&b_3&c_3 \ end {vmatrix}}。$
任务给定以下方程组:
$ \ begin {例} 2w-x + 5y + z = -3 \\ 3w + 2x + 2y-6z = -32 \\ w + 3x + 3y-z = -47 \\ 5w-2x-3y + 3z = 49 \\ \ end {cases} $
使用Cramer的规则解决$ w $,$ x $,$ y $和$ z $ 。
--hints--
cramersRule
是一个函数。
assert(typeof cramersRule === 'function');
cramersRule([[2, -1, 5, 1], [3, 2, 2, -6], [1, 3, 3, -1], [5, -2, -3, 3]], [-3, -32, -47, 49])
应返回[2, -12, -4, 1]
。
assert.deepEqual(cramersRule(matrices[0], freeTerms[0]), answers[0]);
cramersRule([[3, 1, 1], [2, 2, 5], [1, -3, -4]], [3, -1, 2])
应返回[1, 1, -1]
。
assert.deepEqual(cramersRule(matrices[1], freeTerms[1]), answers[1]);
--seed--
--after-user-code--
const matrices = [
[
[2, -1, 5, 1],
[3, 2, 2, -6],
[1, 3, 3, -1],
[5, -2, -3, 3]
],
[
[3, 1, 1],
[2, 2, 5],
[1, -3, -4]
]
];
const freeTerms = [[-3, -32, -47, 49], [3, -1, 2]];
const answers = [[2, -12, -4, 1], [1, 1, -1]];
--seed-contents--
function cramersRule(matrix, freeTerms) {
return true;
}
--solutions--
/**
* Compute Cramer's Rule
* @param {array} matrix x,y,z, etc. terms
* @param {array} freeTerms
* @return {array} solution for x,y,z, etc.
*/
function cramersRule(matrix, freeTerms) {
const det = detr(matrix);
const returnArray = [];
let i;
for (i = 0; i < matrix[0].length; i++) {
const tmpMatrix = insertInTerms(matrix, freeTerms, i);
returnArray.push(detr(tmpMatrix) / det);
}
return returnArray;
}
/**
* Inserts single dimensional array into
* @param {array} matrix multidimensional array to have ins inserted into
* @param {array} ins single dimensional array to be inserted vertically into matrix
* @param {array} at zero based offset for ins to be inserted into matrix
* @return {array} New multidimensional array with ins replacing the at column in matrix
*/
function insertInTerms(matrix, ins, at) {
const tmpMatrix = clone(matrix);
let i;
for (i = 0; i < matrix.length; i++) {
tmpMatrix[i][at] = ins[i];
}
return tmpMatrix;
}
/**
* Compute the determinate of a matrix. No protection, assumes square matrix
* function borrowed, and adapted from MIT Licensed numericjs library (www.numericjs.com)
* @param {array} m Input Matrix (multidimensional array)
* @return {number} result rounded to 2 decimal
*/
function detr(m) {
let ret = 1;
let j;
let k;
const A = clone(m);
const n = m[0].length;
let alpha;
for (j = 0; j < n - 1; j++) {
k = j;
for (let i = j + 1; i < n; i++) { if (Math.abs(A[i][j]) > Math.abs(A[k][j])) { k = i; } }
if (k !== j) {
const temp = A[k]; A[k] = A[j]; A[j] = temp;
ret *= -1;
}
const Aj = A[j];
for (let i = j + 1; i < n; i++) {
const Ai = A[i];
alpha = Ai[j] / Aj[j];
for (k = j + 1; k < n - 1; k += 2) {
const k1 = k + 1;
Ai[k] -= Aj[k] * alpha;
Ai[k1] -= Aj[k1] * alpha;
}
if (k !== n) { Ai[k] -= Aj[k] * alpha; }
}
if (Aj[j] === 0) { return 0; }
ret *= Aj[j];
}
return Math.round(ret * A[j][j] * 100) / 100;
}
/**
* Clone two dimensional Array using ECMAScript 5 map function and EcmaScript 3 slice
* @param {array} m Input matrix (multidimensional array) to clone
* @return {array} New matrix copy
*/
function clone(m) {
return m.map(a => a.slice());
}