Oliver Eyton-Williams ee1e8abd87
feat(curriculum): restore seed + solution to Chinese (#40683)
* feat(tools): add seed/solution restore script

* chore(curriculum): remove empty sections' markers

* chore(curriculum): add seed + solution to Chinese

* chore: remove old formatter

* fix: update getChallenges

parse translated challenges separately, without reference to the source

* chore(curriculum): add dashedName to English

* chore(curriculum): add dashedName to Chinese

* refactor: remove unused challenge property 'name'

* fix: relax dashedName requirement

* fix: stray tag

Remove stray `pre` tag from challenge file.

Signed-off-by: nhcarrigan <nhcarrigan@gmail.com>

Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
2021-01-12 19:31:00 -07:00

1.7 KiB
Raw Blame History

id, title, challengeType, videoUrl, dashedName
id title challengeType videoUrl dashedName
599d15309e88c813a40baf58 5 entropy

--description--

任务:

计算给定输入字符串的香农熵H.

给定谨慎的随机变量$ X ,它是 N “符号”(总字符)的字符串,由 n $个不同的字符组成对于二进制n = 2位/符号中X的香农熵是

H*2X= - \\ sum* {i = 1} ^ n \\ frac {count_i} {N} \\ log_2 \\ left\\ frac {count_i} {N} \\ right

其中$ count_i 是字符 n_i $的计数。

--hints--

entropy是一种功能。

assert(typeof entropy === 'function');

entropy("0")应该返回0

assert.equal(entropy('0'), 0);

entropy("01")应该返回1

assert.equal(entropy('01'), 1);

entropy("0123")应该返回2

assert.equal(entropy('0123'), 2);

entropy("01234567")应该返回3

assert.equal(entropy('01234567'), 3);

entropy("0123456789abcdef")应返回4

assert.equal(entropy('0123456789abcdef'), 4);

entropy("1223334444")应返回1.8464393446710154

assert.equal(entropy('1223334444'), 1.8464393446710154);

--seed--

--seed-contents--

function entropy(s) {

}

--solutions--

function entropy(s) {
    // Create a dictionary of character frequencies and iterate over it.
  function process(s, evaluator) {
    let h = Object.create(null),
      k;
    s.split('').forEach(c => {
      h[c] && h[c]++ || (h[c] = 1); });
    if (evaluator) for (k in h) evaluator(k, h[k]);
    return h;
  }
    // Measure the entropy of a string in bits per symbol.

  let sum = 0,
    len = s.length;
  process(s, (k, f) => {
    const p = f / len;
    sum -= p * Math.log(p) / Math.log(2);
  });
  return sum;
}