* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.9 KiB
1.9 KiB
id, title, challengeType, videoUrl, dashedName
id | title | challengeType | videoUrl | dashedName |
---|---|---|---|---|
594810f028c0303b75339ad3 | 矢量点积 | 5 | vector-dot-product |
--description--
矢量被定义为具有三个维度,由三个数字的有序集合表示:(X,Y,Z)。
任务:
Write a function that takes any numbers of vectors (arrays) as input and computes their dot product.
您的函数应在无效输入(即不同长度的向量)上返回null
。
--hints--
dotProduct必须是一个函数
assert.equal(typeof dotProduct, 'function');
dotProduct()必须返回null
assert.equal(dotProduct(), null);
dotProduct(1],[1)必须返回1。
assert.equal(dotProduct([1], [1]), 1);
dotProduct(1],[1,2)必须返回null。
assert.equal(dotProduct([1], [1, 2]), null);
dotProduct([1,3,-5],[4,-2,-1])必须返回3。
assert.equal(dotProduct([1, 3, -5], [4, -2, -1]), 3);
dotProduct(...nVectors)
应该返回dotProduct(...nVectors)
assert.equal(
dotProduct(
[0, 1, 2, 3, 4],
[0, 2, 4, 6, 8],
[0, 3, 6, 9, 12],
[0, 4, 8, 12, 16],
[0, 5, 10, 15, 20]
),
156000
);
--seed--
--seed-contents--
function dotProduct(...vectors) {
}
--solutions--
function dotProduct(...vectors) {
if (!vectors || !vectors.length) {
return null;
}
if (!vectors[0] || !vectors[0].length) {
return null;
}
const vectorLen = vectors[0].length;
const numVectors = vectors.length;
// If all vectors not same length, return null
for (let i = 0; i < numVectors; i++) {
if (vectors[i].length !== vectorLen) {
return null; // return undefined
}
}
let prod = 0;
let sum = 0;
let j = vectorLen;
let i = numVectors;
// Sum terms
while (j--) {
i = numVectors;
prod = 1;
while (i--) {
prod *= vectors[i][j];
}
sum += prod;
}
return sum;
}