* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
54 lines
841 B
Markdown
54 lines
841 B
Markdown
---
|
|
id: 5e8f2f13c4cdbe86b5c72da2
|
|
challengeType: 11
|
|
videoId: hEUiK7j9UI8
|
|
dashedName: natural-language-processing-with-rnns-training-the-model
|
|
---
|
|
|
|
# --question--
|
|
|
|
## --text--
|
|
|
|
Fill in the blanks below to save your model's checkpoints in the `./checkpoints` directory and call the latest checkpoint for training:
|
|
|
|
```py
|
|
checkpoint_dir = __A__
|
|
checkpoint_prefix = os.path.join(checkpoint_dir, 'ckpt_{epoch}')
|
|
|
|
checkpoint_callback = tf.keras.callbacks.__B__(
|
|
filepath=checkpoint_prefix,
|
|
save_weights_only=True
|
|
)
|
|
|
|
history = model.fit(data, epochs=2, callbacks=[__C__])
|
|
```
|
|
|
|
## --answers--
|
|
|
|
A: `'./training_checkpoints'`
|
|
|
|
B: `ModelCheckpoint`
|
|
|
|
C: `checkpoint_prefix`
|
|
|
|
---
|
|
|
|
A: `'./checkpoints'`
|
|
|
|
B: `ModelCheckpoint`
|
|
|
|
C: `checkpoint_callback`
|
|
|
|
---
|
|
|
|
A: `'./checkpoints'`
|
|
|
|
B: `BaseLogger`
|
|
|
|
C: `checkpoint_callback`
|
|
|
|
## --video-solution--
|
|
|
|
2
|
|
|