* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.8 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
594810f028c0303b75339acd | Abundant, deficient and perfect number classifications | 5 | 302221 | abundant-deficient-and-perfect-number-classifications |
--description--
These define three classifications of positive integers based on their proper divisors.
Let P(n)
be the sum of the proper divisors of n
where proper divisors are all positive integers n
other than n
itself.
If P(n) < n
then n
is classed as deficient
If P(n) === n
then n
is classed as perfect
If P(n) > n
then n
is classed as abundant
Example: 6
has proper divisors of 1
, 2
, and 3
. 1 + 2 + 3 = 6
, so 6
is classed as a perfect number.
--instructions--
Implement a function that calculates how many of the integers from 1
to 20,000
(inclusive) are in each of the three classes. Output the result as an array in the following format [deficient, perfect, abundant]
.
--hints--
getDPA
should be a function.
assert(typeof getDPA === 'function');
getDPA
should return an array.
assert(Array.isArray(getDPA(100)));
getDPA
return value should have a length of 3.
assert(getDPA(100).length === 3);
getDPA(20000)
should equal [15043, 4, 4953]
assert.deepEqual(getDPA(20000), solution);
--seed--
--after-user-code--
const solution = [15043, 4, 4953];
--seed-contents--
function getDPA(num) {
}
--solutions--
function getDPA(num) {
const dpa = [1, 0, 0];
for (let n = 2; n <= num; n += 1) {
let ds = 1;
const e = Math.sqrt(n);
for (let d = 2; d < e; d += 1) {
if (n % d === 0) {
ds += d + (n / d);
}
}
if (n % e === 0) {
ds += e;
}
dpa[ds < n ? 0 : ds === n ? 1 : 2] += 1;
}
return dpa;
}