* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
4.1 KiB
4.1 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
594d966a1467eb84194f0086 | Averages/Pythagorean means | 5 | 302227 | averagespythagorean-means |
--description--
Compute all three of the Pythagorean means of the set of integers 1
through 10
(inclusive).
Show that A(x_1,\\ldots,x_n) \\geq G(x_1,\\ldots,x_n) \\geq H(x_1,\\ldots,x_n)
for this set of positive integers.
- The most common of the three means, the arithmetic mean, is the sum of the list divided by its length:
$ A(x_1, \ldots, x_n) = \frac{x_1 + \cdots + x_n}{n}$ - The geometric mean is the $n$th root of the product of the list:
$ G(x_1, \ldots, x_n) = \sqrt[n]{x_1 \cdots x_n} $ - The harmonic mean is $n$ divided by the sum of the reciprocal of each item in the list:
$ H(x_1, \ldots, x_n) = \frac{n}{\frac{1}{x_1} + \cdots + \frac{1}{x_n}} $
--instructions--
When writing your function, assume the input is an ordered array of all inclusive numbers.
For the answer, please output an object in the following format:
{
values: {
Arithmetic: 5.5,
Geometric: 4.528728688116765,
Harmonic: 3.414171521474055
},
test: 'is A >= G >= H ? yes'
}
--hints--
pythagoreanMeans
should be a function.
assert(typeof pythagoreanMeans === 'function');
pythagoreanMeans([1, 2, ..., 10])
should equal the same output above.
assert.deepEqual(pythagoreanMeans(range1), answer1);
--seed--
--after-user-code--
const range1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
const answer1 = {
values: {
Arithmetic: 5.5,
Geometric: 4.528728688116765,
Harmonic: 3.414171521474055
},
test: 'is A >= G >= H ? yes'
};
--seed-contents--
function pythagoreanMeans(rangeArr) {
}
--solutions--
function pythagoreanMeans(rangeArr) {
// arithmeticMean :: [Number] -> Number
const arithmeticMean = xs =>
foldl((sum, n) => sum + n, 0, xs) / length(xs);
// geometricMean :: [Number] -> Number
const geometricMean = xs =>
raise(foldl((product, x) => product * x, 1, xs), 1 / length(xs));
// harmonicMean :: [Number] -> Number
const harmonicMean = xs =>
length(xs) / foldl((invSum, n) => invSum + (1 / n), 0, xs);
// GENERIC FUNCTIONS ------------------------------------------------------
// A list of functions applied to a list of arguments
// <*> :: [(a -> b)] -> [a] -> [b]
const ap = (fs, xs) => //
Array.prototype.concat(...fs.map(f => //
Array.prototype.concat(...xs.map(x => [f(x)]))));
// foldl :: (b -> a -> b) -> b -> [a] -> b
const foldl = (f, a, xs) => xs.reduce(f, a);
// length :: [a] -> Int
const length = xs => xs.length;
// mapFromList :: [(k, v)] -> Dictionary
const mapFromList = kvs =>
foldl((a, [k, v]) =>
(a[(typeof k === 'string' && k)] = v, a), {}, kvs);
// raise :: Num -> Int -> Num
const raise = (n, e) => Math.pow(n, e);
/*
// show :: a -> String
// show :: a -> Int -> String
const show = (...x) =>
JSON.stringify.apply(
null, x.length > 1 ? [x[0], null, x[1]] : x
);
*/
// zip :: [a] -> [b] -> [(a,b)]
const zip = (xs, ys) =>
xs.slice(0, Math.min(xs.length, ys.length))
.map((x, i) => [x, ys[i]]);
// TEST -------------------------------------------------------------------
// mean :: Dictionary
const mean = mapFromList(zip(
['Arithmetic', 'Geometric', 'Harmonic'],
ap([arithmeticMean, geometricMean, harmonicMean], [
rangeArr
])
));
return {
values: mean,
test: `is A >= G >= H ? ${mean.Arithmetic >= mean.Geometric &&
mean.Geometric >= mean.Harmonic ? 'yes' : 'no'}`
};
}