* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
1.1 KiB
1.1 KiB
id, title, challengeType, forumTopicId, dashedName
id | title | challengeType | forumTopicId | dashedName |
---|---|---|---|---|
594da033de4190850b893874 | Averages/Root mean square | 5 | 302228 | averagesroot-mean-square |
--description--
Compute the Root mean square of the numbers 1 through 10 inclusive.
The root mean square is also known by its initials RMS (or rms), and as the quadratic mean.
The RMS is calculated as the mean of the squares of the numbers, square-rooted:
x\_{\\mathrm{rms}} = \\sqrt {{{x_1}^2 + {x_2}^2 + \\cdots + {x_n}^2} \\over n}.
--hints--
rms
should be a function.
assert(typeof rms === 'function');
rms([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
should equal 6.2048368229954285
.
assert.equal(rms(arr1), answer1);
--seed--
--after-user-code--
const arr1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
const answer1 = 6.2048368229954285;
--seed-contents--
function rms(arr) {
}
--solutions--
function rms(arr) {
const sumOfSquares = arr.reduce((s, x) => s + x * x, 0);
return Math.sqrt(sumOfSquares / arr.length);
}