* feat(tools): add seed/solution restore script * chore(curriculum): remove empty sections' markers * chore(curriculum): add seed + solution to Chinese * chore: remove old formatter * fix: update getChallenges parse translated challenges separately, without reference to the source * chore(curriculum): add dashedName to English * chore(curriculum): add dashedName to Chinese * refactor: remove unused challenge property 'name' * fix: relax dashedName requirement * fix: stray tag Remove stray `pre` tag from challenge file. Signed-off-by: nhcarrigan <nhcarrigan@gmail.com> Co-authored-by: nhcarrigan <nhcarrigan@gmail.com>
364 lines
9.8 KiB
Markdown
364 lines
9.8 KiB
Markdown
---
|
|
id: 5951a53863c8a34f02bf1bdc
|
|
title: Closest-pair problem
|
|
challengeType: 5
|
|
forumTopicId: 302232
|
|
dashedName: closest-pair-problem
|
|
---
|
|
|
|
# --description--
|
|
|
|
Provide a function to find the closest two points among a set of given points in two dimensions, i.e. to solve the [Closest pair of points problem](<https://en.wikipedia.org/wiki/Closest pair of points problem> "wp: Closest pair of points problem") in the *planar* case.
|
|
|
|
The straightforward solution is a O(n<sup>2</sup>) algorithm (which we can call *brute-force algorithm*); the pseudo-code (using indexes) could be simply:
|
|
|
|
<pre><strong>bruteForceClosestPair</strong> of P(1), P(2), ... P(N)
|
|
<strong>if</strong> N < 2 <strong>then</strong>
|
|
<strong>return</strong> ∞
|
|
<strong>else</strong>
|
|
minDistance ← |P(1) - P(2)|
|
|
minPoints ← { P(1), P(2) }
|
|
<strong>foreach</strong> i ∈ [1, N-1]
|
|
<strong>foreach</strong> j ∈ [i+1, N]
|
|
<strong>if</strong> |P(i) - P(j)| < minDistance <strong>then</strong>
|
|
minDistance ← |P(i) - P(j)|
|
|
minPoints ← { P(i), P(j) }
|
|
<strong>endif</strong>
|
|
<strong>endfor</strong>
|
|
<strong>endfor</strong>
|
|
<strong>return</strong> minDistance, minPoints
|
|
<strong>endif</strong>
|
|
</pre>
|
|
|
|
A better algorithm is based on the recursive divide and conquer approach, as explained also at [Wikipedia's Closest pair of points problem](<https://en.wikipedia.org/wiki/Closest pair of points problem#Planar_case> "wp: Closest pair of points problem#Planar_case"), which is `O(nlog(n))` a pseudo-code could be:
|
|
|
|
<pre><strong>closestPair</strong> of (xP, yP)
|
|
where xP is P(1) .. P(N) sorted by x coordinate, and
|
|
yP is P(1) .. P(N) sorted by y coordinate (ascending order)
|
|
<strong>if</strong> N ≤ 3 <strong>then</strong>
|
|
<strong>return</strong> closest points of xP using brute-force algorithm
|
|
<strong>else</strong>
|
|
xL ← points of xP from 1 to ⌈N/2⌉
|
|
xR ← points of xP from ⌈N/2⌉+1 to N
|
|
xm ← xP(⌈N/2⌉)<sub>x</sub>
|
|
yL ← { p ∈ yP : p<sub>x</sub> ≤ xm }
|
|
yR ← { p ∈ yP : p<sub>x</sub> > xm }
|
|
(dL, pairL) ← closestPair of (xL, yL)
|
|
(dR, pairR) ← closestPair of (xR, yR)
|
|
(dmin, pairMin) ← (dR, pairR)
|
|
<strong>if</strong> dL < dR <strong>then</strong>
|
|
(dmin, pairMin) ← (dL, pairL)
|
|
<strong>endif</strong>
|
|
yS ← { p ∈ yP : |xm - p<sub>x</sub>| < dmin }
|
|
nS ← number of points in yS
|
|
(closest, closestPair) ← (dmin, pairMin)
|
|
<strong>for</strong> i <strong>from</strong> 1 <strong>to</strong> nS - 1
|
|
k ← i + 1
|
|
<strong>while</strong> k ≤ nS <strong>and</strong> yS(k)<sub>y</sub> - yS(i)<sub>y</sub> < dmin
|
|
<strong>if</strong> |yS(k) - yS(i)| < closest <strong>then</strong>
|
|
(closest, closestPair) ← (|yS(k) - yS(i)|, {yS(k), yS(i)})
|
|
<strong>endif</strong>
|
|
k ← k + 1
|
|
<strong>endwhile</strong>
|
|
<strong>endfor</strong>
|
|
<strong>return</strong> closest, closestPair
|
|
<strong>endif</strong>
|
|
</pre>
|
|
|
|
For the input, expect the argument to be an array of objects (points) with `x` and `y` members set to numbers. For the output, return an object containing the key:value pairs for `distance` and `pair` (the pair of two closest points).
|
|
|
|
**References and further readings:**
|
|
|
|
<ul>
|
|
<li><a href='https://en.wikipedia.org/wiki/Closest pair of points problem' title='wp: Closest pair of points problem' target='_blank'>Closest pair of points problem</a></li>
|
|
<li><a href='https://www.cs.mcgill.ca/~cs251/ClosestPair/ClosestPairDQ.html' target='_blank'>Closest Pair (McGill)</a></li>
|
|
<li><a href='https://www.cs.ucsb.edu/~suri/cs235/ClosestPair.pdf' target='_blank'>Closest Pair (UCSB)</a></li>
|
|
<li><a href='https://classes.cec.wustl.edu/~cse241/handouts/closestpair.pdf' target='_blank'>Closest pair (WUStL)</a></li>
|
|
</ul>
|
|
|
|
# --hints--
|
|
|
|
`getClosestPair` should be a function.
|
|
|
|
```js
|
|
assert(typeof getClosestPair === 'function');
|
|
```
|
|
|
|
Distance should be the following.
|
|
|
|
```js
|
|
assert.equal(getClosestPair(points1).distance, answer1.distance);
|
|
```
|
|
|
|
Points should be the following.
|
|
|
|
```js
|
|
assert.deepEqual(
|
|
JSON.parse(JSON.stringify(getClosestPair(points1))).pair,
|
|
answer1.pair
|
|
);
|
|
```
|
|
|
|
Distance should be the following.
|
|
|
|
```js
|
|
assert.equal(getClosestPair(points2).distance, answer2.distance);
|
|
```
|
|
|
|
Points should be the following.
|
|
|
|
```js
|
|
assert.deepEqual(
|
|
JSON.parse(JSON.stringify(getClosestPair(points2))).pair,
|
|
answer2.pair
|
|
);
|
|
```
|
|
|
|
# --seed--
|
|
|
|
## --after-user-code--
|
|
|
|
```js
|
|
const points1 = [
|
|
new Point(0.748501, 4.09624),
|
|
new Point(3.00302, 5.26164),
|
|
new Point(3.61878, 9.52232),
|
|
new Point(7.46911, 4.71611),
|
|
new Point(5.7819, 2.69367),
|
|
new Point(2.34709, 8.74782),
|
|
new Point(2.87169, 5.97774),
|
|
new Point(6.33101, 0.463131),
|
|
new Point(7.46489, 4.6268),
|
|
new Point(1.45428, 0.087596)
|
|
];
|
|
|
|
const points2 = [
|
|
new Point(37100, 13118),
|
|
new Point(37134, 1963),
|
|
new Point(37181, 2008),
|
|
new Point(37276, 21611),
|
|
new Point(37307, 9320)
|
|
];
|
|
|
|
const answer1 = {
|
|
distance: 0.0894096443343775,
|
|
pair: [
|
|
{
|
|
x: 7.46489,
|
|
y: 4.6268
|
|
},
|
|
{
|
|
x: 7.46911,
|
|
y: 4.71611
|
|
}
|
|
]
|
|
};
|
|
|
|
const answer2 = {
|
|
distance: 65.06919393998976,
|
|
pair: [
|
|
{
|
|
x: 37134,
|
|
y: 1963
|
|
},
|
|
{
|
|
x: 37181,
|
|
y: 2008
|
|
}
|
|
]
|
|
};
|
|
|
|
const benchmarkPoints = [
|
|
new Point(16909, 54699),
|
|
new Point(14773, 61107),
|
|
new Point(95547, 45344),
|
|
new Point(95951, 17573),
|
|
new Point(5824, 41072),
|
|
new Point(8769, 52562),
|
|
new Point(21182, 41881),
|
|
new Point(53226, 45749),
|
|
new Point(68180, 887),
|
|
new Point(29322, 44017),
|
|
new Point(46817, 64975),
|
|
new Point(10501, 483),
|
|
new Point(57094, 60703),
|
|
new Point(23318, 35472),
|
|
new Point(72452, 88070),
|
|
new Point(67775, 28659),
|
|
new Point(19450, 20518),
|
|
new Point(17314, 26927),
|
|
new Point(98088, 11164),
|
|
new Point(25050, 56835),
|
|
new Point(8364, 6892),
|
|
new Point(37868, 18382),
|
|
new Point(23723, 7701),
|
|
new Point(55767, 11569),
|
|
new Point(70721, 66707),
|
|
new Point(31863, 9837),
|
|
new Point(49358, 30795),
|
|
new Point(13041, 39745),
|
|
new Point(59635, 26523),
|
|
new Point(25859, 1292),
|
|
new Point(1551, 53890),
|
|
new Point(70316, 94479),
|
|
new Point(48549, 86338),
|
|
new Point(46413, 92747),
|
|
new Point(27186, 50426),
|
|
new Point(27591, 22655),
|
|
new Point(10905, 46153),
|
|
new Point(40408, 84202),
|
|
new Point(52821, 73520),
|
|
new Point(84865, 77388),
|
|
new Point(99819, 32527),
|
|
new Point(34404, 75657),
|
|
new Point(78457, 96615),
|
|
new Point(42140, 5564),
|
|
new Point(62175, 92342),
|
|
new Point(54958, 67112),
|
|
new Point(4092, 19709),
|
|
new Point(99415, 60298),
|
|
new Point(51090, 52158),
|
|
new Point(48953, 58567)
|
|
];
|
|
```
|
|
|
|
## --seed-contents--
|
|
|
|
```js
|
|
const Point = function(x, y) {
|
|
this.x = x;
|
|
this.y = y;
|
|
};
|
|
Point.prototype.getX = function() {
|
|
return this.x;
|
|
};
|
|
Point.prototype.getY = function() {
|
|
return this.y;
|
|
};
|
|
|
|
function getClosestPair(pointsArr) {
|
|
|
|
return true;
|
|
}
|
|
```
|
|
|
|
# --solutions--
|
|
|
|
```js
|
|
const Point = function(x, y) {
|
|
this.x = x;
|
|
this.y = y;
|
|
};
|
|
Point.prototype.getX = function() {
|
|
return this.x;
|
|
};
|
|
Point.prototype.getY = function() {
|
|
return this.y;
|
|
};
|
|
|
|
const mergeSort = function mergeSort(points, comp) {
|
|
if(points.length < 2) return points;
|
|
|
|
var n = points.length,
|
|
i = 0,
|
|
j = 0,
|
|
leftN = Math.floor(n / 2),
|
|
rightN = leftN;
|
|
|
|
var leftPart = mergeSort( points.slice(0, leftN), comp),
|
|
rightPart = mergeSort( points.slice(rightN), comp );
|
|
|
|
var sortedPart = [];
|
|
|
|
while((i < leftPart.length) && (j < rightPart.length)) {
|
|
if(comp(leftPart[i], rightPart[j]) < 0) {
|
|
sortedPart.push(leftPart[i]);
|
|
i += 1;
|
|
}
|
|
else {
|
|
sortedPart.push(rightPart[j]);
|
|
j += 1;
|
|
}
|
|
}
|
|
while(i < leftPart.length) {
|
|
sortedPart.push(leftPart[i]);
|
|
i += 1;
|
|
}
|
|
while(j < rightPart.length) {
|
|
sortedPart.push(rightPart[j]);
|
|
j += 1;
|
|
}
|
|
return sortedPart;
|
|
};
|
|
|
|
const closestPair = function _closestPair(Px, Py) {
|
|
if(Px.length < 2) return { distance: Infinity, pair: [ new Point(0, 0), new Point(0, 0) ] };
|
|
if(Px.length < 3) {
|
|
//find euclid distance
|
|
var d = Math.sqrt( Math.pow(Math.abs(Px[1].x - Px[0].x), 2) + Math.pow(Math.abs(Px[1].y - Px[0].y), 2) );
|
|
return {
|
|
distance: d,
|
|
pair: [ Px[0], Px[1] ]
|
|
};
|
|
}
|
|
|
|
var n = Px.length,
|
|
leftN = Math.floor(n / 2),
|
|
rightN = leftN;
|
|
|
|
var Xl = Px.slice(0, leftN),
|
|
Xr = Px.slice(rightN),
|
|
Xm = Xl[leftN - 1],
|
|
Yl = [],
|
|
Yr = [];
|
|
//separate Py
|
|
for(var i = 0; i < Py.length; i += 1) {
|
|
if(Py[i].x <= Xm.x)
|
|
Yl.push(Py[i]);
|
|
else
|
|
Yr.push(Py[i]);
|
|
}
|
|
|
|
var dLeft = _closestPair(Xl, Yl),
|
|
dRight = _closestPair(Xr, Yr);
|
|
|
|
var minDelta = dLeft.distance,
|
|
closestPair = dLeft.pair;
|
|
if(dLeft.distance > dRight.distance) {
|
|
minDelta = dRight.distance;
|
|
closestPair = dRight.pair;
|
|
}
|
|
|
|
//filter points around Xm within delta (minDelta)
|
|
var closeY = [];
|
|
for(i = 0; i < Py.length; i += 1) {
|
|
if(Math.abs(Py[i].x - Xm.x) < minDelta) closeY.push(Py[i]);
|
|
}
|
|
//find min within delta. 8 steps max
|
|
for(i = 0; i < closeY.length; i += 1) {
|
|
for(var j = i + 1; j < Math.min( (i + 8), closeY.length ); j += 1) {
|
|
var d = Math.sqrt( Math.pow(Math.abs(closeY[j].x - closeY[i].x), 2) + Math.pow(Math.abs(closeY[j].y - closeY[i].y), 2) );
|
|
if(d < minDelta) {
|
|
minDelta = d;
|
|
closestPair = [ closeY[i], closeY[j] ]
|
|
}
|
|
}
|
|
}
|
|
|
|
return {
|
|
distance: minDelta,
|
|
pair: closestPair
|
|
};
|
|
};
|
|
|
|
function getClosestPair(points) {
|
|
const sortX = function(a, b) { return (a.x < b.x) ? -1 : ((a.x > b.x) ? 1 : 0); }
|
|
const sortY = function(a, b) { return (a.y < b.y) ? -1 : ((a.y > b.y) ? 1 : 0); }
|
|
|
|
const Px = mergeSort(points, sortX);
|
|
const Py = mergeSort(points, sortY);
|
|
|
|
return closestPair(Px, Py);
|
|
}
|
|
```
|